• Title/Summary/Keyword: mode size converter

Search Result 124, Processing Time 0.023 seconds

Design and analysis of a mode size converter composed of periodically segmented taper waveguide (주기적으로 분리된 광도파로로 구성된 모드 크기 변환기의 설계 및 분석)

  • 박보근;정영철
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • In this paper, we designed a mode size converter to reduce coupling loss between optical waveguide and single mode fiber. The proposed mode converter is composed of periodically segmented tapered waveguide to achieve small size and easy fabrication. For the optimally designed mode size converter at 1550nm, the taper length is 500(equation omitted), the segmentation period 5ß:, the waveguide width of fiber contact section 1.3ß:, and duty cycle 0.95. The coupling loss of the optimized mode size converter is 0.33㏈/point, which is 1.27㏈/point lower than that without the mode size converter.

Design and analysis of a mode size converter composed of periodically segmented taper waveguide surrounded by trenches (좌우 트렌치를 구비한 분리 주기 테이퍼 도파로 모드 크기 변환기의 설계 및 성능 분석)

  • Park Bo Gen;Chung Young Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.43-49
    • /
    • 2004
  • In this paper, we have designed a mode size converter to reduce coupling loss between super-high delta silica optical waveguides and single mode fibers. The new mode size converter has three design aspects; periodically segmented taper waveguide for minimal size, lateral taper waveguide for simple fabrication, and surrounding trenches to improve coupling loss. In the optimal mode size converter design, coupling loss is 0.33dB/point without trenches and 0.2dB/point with trenches.

High Efficiency and Small Size Switch Mode Line Transformer(SMLT) (고효율 및 소형 스위치모드 라인 트랜스포머)

  • Kim, Jin-Hong;Yang, Jung-Woo;Jang, Du-Hee;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.237-243
    • /
    • 2019
  • A high-efficiency and small-sized switched-mode line transformer (SMLT) is proposed in this study. The conventional structure of an adapter is composed of line transformer and rectifiers. This structure has a limit in miniaturizing due to low-frequency line transformer. Another structure is composed of power factor correction (PFC) and DC/DC converter. This structure has a limit in reducing volume due to two-stage structure. As the proposed SMLT is composed of an LLC resonant converter, a high-frequency transformer can be adopted to achieve isolation standards and size reduction. This proposed structure has different operation modes in accordance with line input voltage to overcome poor line regulation. In addition, the proposed SMLT is applied to the front of a conventional PFC converter, because the SMLT output voltage is restored to rectified sinusoidal wave by using a full-bridge rectifier in the secondary side. The design of the PFC converter is easy, because the SMLT output voltage is controlled as rectified sinusoidal wave. The validity of the proposed converter is proven through a 350 W prototype.

Design of Spot - Size Converter for optical network (광 네트워크 용 Spot - Size Converter 설계 최적화 설계)

  • Seok, Jae-Hyuk;Kim, Eung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.573-578
    • /
    • 2012
  • The simplified spot-size convert for optical network has been suggested. We have analyzed the mode field distribution and optimized the spot-size converter using beam propagation method. The designed structure was consisted of straight waveguide and taper waveguide using polymer. The efficiency of the designed spot-size converter was over 99%.

A Study on High Efficiency Boost DC-DC Converter of Discontinuous Current Mode Control (전류불연속 제어의 고효율 부스트 DC-DC 컨버터에 관한 연구)

  • Kwak Dong-Kurl;Kim Choon-Sam
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.431-436
    • /
    • 2005
  • This paper studies a novel boost DC-DC converter operated high efficiency for discontinuous current mode (DCM) control. The converter worked in DCM eliminates the complicated circuit control requirement, reduces a number of components, and reduces the used reactive components size. In the general DCM converter, the switching devices are turned-on the zero current switching (ZCS), and the switching devices must be switched-off at a maximum reactor current. To achieve the zero voltage switching (ZVS) at the switching turn-off, the proposed converter is constructed by using a new loss-less snubber circuit. Soft-switched operation of the proposed boost converter is verified by digital simulation and experimental results. A new boost converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of boost DC-DC converter is high.

Analysis, Design, and Implementation of a Single-Phase Power-Factor Corrected AC-DC Zeta Converter with High Frequency Isolation

  • Singh, Bhim;Agrawal, Mahima;Dwivedi, Sanjeet
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.243-253
    • /
    • 2008
  • This paper deals with the analysis, design, and implementation of a single phase AC-DC Zeta converter with high frequency transformer isolation and power factor correction(PFC) in two modes of operation, discontinuous current mode of operation(DCM), and continuous current mode of operation(CCM). A Digital Signal Processor(DSP) based implementation is carried out for validation of the Zeta converter developed design in discontinuous mode of operation. A comparison of both modes of operation is presented for a 1kW power rating from the point of view of steady state and dynamic behavior, power quality, simplicity, control technique, device rating, and converter size. The experimental results of a developed prototype of Zeta converter are presented for validation of the developed design. It is observed that CCM is most suitable for higher power applications where it requires some complex control and sensing of the additional variables.

Modeling and Steady-state Analysis of the Multi-Phase Interleaved Buck converter in Discontinuous Inductor Current Mode (불연속 전류모드에서의 다상 교호 강압컨버터의 정상상태 해석 및 모델링)

  • Chang, Sung-Dong;Jang, Eun-Sung;Chung, Se-Kyo;Shin, Hwi-Boem;Lee, Hyun-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.506-510
    • /
    • 2004
  • A multi-phase interleaved buck converter is used to reduce current ripples and filter size of a power supply. This paper addresses the modelling and steady-state analysis of the multi-phase interleaved buck converter operated in discontinuous inductor current mode. The model is derived using an averaging technique in steady state. The do voltage ratio and the range of the discontinuous inductor current mode(DICM) and the continuous output current mode(COCM) are derived from the averaged state-space model. In addition, the efficiency is investigated according to the number of phase.

  • PDF

High Efficiency Switch Mode Line Transformer (SMLT) Composed of Load Sharing Dual Modules (부하평형 듀얼 모듈로 구성된 고효율 스위치 모드 라인 트랜스포머(SMLT))

  • Kim, Jin-Hong;Yang, Jung-Woo;Jang, Du-Hee;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.188-194
    • /
    • 2020
  • This paper presents a high-efficiency Switch Mode Line Transformer (SMLT) composed of load-shared dual modules, which is based on the AC/AC LLC resonant converter. Given that the conventional adaptor is usually composed of two power stages, namely, the PFC and DC/DC converters, its system size can be increased according to the output power. However, given that the proposed SMLT can separate the PFC converter from the adaptor, the size reduction of the system can be achieved. Meanwhile, the SMLT with a single module has the limit of the size reduction because of a high resonant current. Thus, it can be configured with dual or multiple modules to reduce the resonant current. Then, their load sharing can be guaranteed by only the proposed transformer structure without an extra current controller. The validity of the proposed converter is proven through a 850-W prototype.

Improving the Light-Load Efficiency of a LDO-Embedded DC-DC Buck Converter Using a Size Control Method of the Power-Transistor (파워 트랜지스터 사이즈 조절 기법을 이용한 LDO 내장형 DC-DC 벅 컨버터의 저부하 효율 개선)

  • Kim, Hyojoong;Wee, Jaekyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.59-66
    • /
    • 2015
  • In this paper, we propose a method of improving the light-load efficiency of DC-DC buck converter using 4bit SAR-ADC (Successive Approximation ADC) for a LDO or a power transistor size selection technique. The proposed circuit selects power transistor sizes depending on load current so that improves the light-load efficiency of the DC-DC buck converter. For this, we select the power transistor size with a cross point of the switching loss and the conduction loss. Also, when the IC operates in standby mode or sleep mode, a LDO mode is selected for improving the efficiency. The proposed circuit selects power transistor sizes(X1, X2, X4, X8) with 4 bits and its efficiency is higher about the maximum of 25% at the light-load than that of a single transistor size. Input voltage and output voltage are 5V and 3.3V for maximum load currents of 500mA.

High Frequency Dual Mode Control LLC Resonant Converter with Wide Input Voltage Range (넓은 입력전압범위의 고주파수 구동 Dual mode control LLC 공진형 컨버터)

  • Joo, Hyung-Ik;Yang, Jung-Woo;Jo, Kang-Ta;Han, Sang-Kyoo;Sakong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2016
  • In this paper, a high-frequency dual mode control LLC resonant converter with wide input voltage range is proposed through zero voltage switching (ZVS) under the universal line input voltage and every load conditions. Conventional small power adapter driving should be satisfied with universal line input voltage because it has no power factor correction circuit regulation. The conventional LLC resonant converter for an adapter can reduce the size of transformer in terms of high-frequency driving and ZVS. However, this converter has a disadvantage in terms of design of resonant tank under various input voltages because the frequency modulation range is very wide to satisfy voltage conversion gain. Compared with the conventional one, the proposed LLC converter can be adapted to universal line input voltage and high-frequency driving because it is controlled by pulse width modulation and pulse frequency modulation with control voltage. The validity of the proposed LLC converter is proved through the 60 W prototype.