• Title/Summary/Keyword: mode shape

Search Result 1,539, Processing Time 0.025 seconds

Visualization of Delamination Region in Concrete Structures using Mode Shapes of Delaminated Concrete Section (II) : Impact-Echo Test (박리된 콘크리트의 진동 모드 형상을 이용한 콘크리트 구조물 박리 손상 영역 가시화 (II) : 충격-반향 시험)

  • Oh, Taekeun;Shin, Sung Woo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.36-41
    • /
    • 2013
  • Previous study showed that delamination region in concrete structures can be successfully visualized using mode shapes of delaminated concrete section. However, modal tests for this purpose to obtain mode shapes of the delaminated concrete section may not be applicable in practice since, to correctly obtain the mode shapes of the section, the location and the shape of the delamination region in a structure should be known in advance. Unfortunately those are normally unknown in a real structure. Therefore, a moving forward test method may be useful to obtain the mode shapes of the concrete section when the location and the shape of the delamination region are not known. In this study, impact-echo testing based mode shape estimation technique is proposed and experimentally validated for visualization of delamination region.

Evaluation of mode-shape linearization for HFBB analysis of real tall buildings

  • Tse, K.T.;Yu, X.J.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.423-441
    • /
    • 2014
  • The high frequency base balance (HFBB) technique is a convenient and relatively fast wind tunnel testing technique for predicting wind-induced forces for tall building design. While modern tall building design has seen a number architecturally remarkable buildings constructed recently, the characteristics of those buildings are significantly different to those that were common when the HFBB technique was originally developed. In particular, the prediction of generalized forces for buildings with 3-dimensional mode shapes has a number of inherent uncertainties and challenges that need to be overcome to accurately predict building loads and responses. As an alternative to the more conventional application of general mode shape correction factors, an analysis methodology, referred to as the linear-mode-shape (LMS) method, has been recently developed to allow better estimates of the generalized forces by establishing a new set of centers at which the translational mode shapes are linear. The LMS method was initially evaluated and compared with the methods using mode shape correction factors for a rectangular building, which was wind tunnel tested in isolation in an open terrain for five incident wind angles at $22.5^{\circ}$ increments from $0^{\circ}$ to $90^{\circ}$. The results demonstrated that the LMS method provides more accurate predictions of the wind-induced loads and building responses than the application of mode shape correction factors. The LMS method was subsequently applied to a tall building project in Hong Kong. The building considered in the current study is located in a heavily developed business district and surrounded by tall buildings and mixed terrain. The HFBB results validated the versatility of the LMS method for the structural design of an actual tall building subjected to the varied wind characteristics caused by the surroundings. In comparison, the application of mode shape correction factors in the HFBB analysis did not directly take into account the influence of the site specific characteristics on the actual wind loads, hence their estimates of the building responses have a higher variability.

A Continuous Scanning Laser Doppler Vibrometer for Mode Shape Analysis (모드형상분석을 위한 연속 스캐닝 레이저 도플러 진동측정기)

  • 라종필;최지은;박기환;경용수;왕세명;김경석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.274-280
    • /
    • 2002
  • This paper addresses the vibration mode shape measurement technique utilizing a Continuous Scanning Laser Doppler Vibrometer (CSLDV). The continuous scanning capability is added to the conventional discrete Laser Doppler Vibrometer by reflecting the laser beams on the surface of the object using two oscillating mirrors. The bow scanning resulted from the proposed scanning method is eliminated by feedback control. The velocity output signal from the CSLDV is modulated to give the spatial velocity distribution in terms of coefficients which are obtained from the Fast Fourier Transformation of the time dependent velocity signal. Using the Chebyshev series form, the analysis of the vibration mode shape techniques for straight Bine scanning and 2 dimensional scanning are presented and discussed. The performance of the proposed SLDV is presented using the experimental results of the vibration mode shape of a plate

  • PDF

Failure-Proof Design of the PCB of a Monitor Using Deformed Mode Shape (변형 모드를 이용한 모니터용 회로 기판의 파손 저감 설계에 관한 연구)

  • Park, Sang-Hu;Lee, Bu-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.111-116
    • /
    • 2001
  • A practical scheme to reduce failure of the PCB(Printed Circuit Board) of a monitor is introduced using deformed mode shape under mechanical shock. When the monitor is given critical shock loads, cracks are commonly initiated at the tip of a hole on the PCB. Accordingly, a deformed mode shape of the PCB is obtained using a FEM code to define a weak point on the PCB under mechanical shock, and then the position and direction of the hole is determined to prevent the failure at the critical mode shape. Also, the stress intensity factor around the weak point on the PCB is calculated to check the possibility of fracture by normal tensile stress. In conclusion, present research is useful to assist the practical design of components-layout on the PCB.

  • PDF

Mode shape identification using response spectrum in experimental modal analysis

  • Babakhani, Behrouz;Rahami, Hossein;Mohammadi, Reza Karami
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.345-361
    • /
    • 2018
  • The set of processes performed to determine the dynamic characteristics of the constructed structures is named experimental modal analysis. Using experimental modal analysis and interpreting its results, structural failure can be assessed and then it would be possible to plan for their repair and maintenance. The purpose of the experimental modal analysis is to determine the resonance frequencies, mode shapes and Mode damping for the structure. Diverse methods for determining the shape of the mode by various researchers have been presented. There are pros and cons for each of these methods. This paper presents a method for determining the mode shape of the structures using the response spectrum in the experimental modal analysis. In the first part, the principles of the proposed method are described. Then, to check the accuracy of the results obtained from the proposed method, single and multiple degrees of freedom models were numerically and experimentally investigated.

Mode Shape Variation of Disc Brake with Respect to Contact Stiffness Variation (마찰재 접촉강성에 따른 디스크 브레이크 진동모드 형상화)

  • Kang, Jae-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.127-132
    • /
    • 2010
  • Eigensolutions associated with self-excited vibration of disc brake system can be obtained by complex eigenvalue analysis. The eigenvalue sensitivity to change in contact stiffness can be used to demonstrate stability criteria and eigenvalue veering. Dynamic instability on eigenvalue loci with respect to the variation of contact stiffness is found to be related to mode interaction between two adjacent modes. This modal interaction can be effectively shown by mode shape visualization. This paper presents the methodology to construct the mode shape of disc brake system where a disc and two brake pads are coupled with contact stiffness.

Advanced Load Follow Operation Mode for Korean Standardized Nuclear Power Plants (한국 표준 원전의 부하추종을 위한 운전 기법)

  • Park, Jung-In;Oh, Soo-Youl;Song, In-Ho;Hah, Yung-Joon;Kuh, Jung-Eui;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.183-192
    • /
    • 1992
  • An advanced load-follow operation mode, Mode K, is presented for the Korean Standardized Nuclear Power Plants. The Mode K utilizes a heavy worth bank dedicated to axial shape control independent of the existing regulating banks. In Mode K, the heavy bank provides a wide range of axial shape control and a monotonic relationship between its motion and the axial shape change, which makes it easy to automate axial shape control. The achievement of full automatic reactor power control both for the reactivity and power shape would reduce the burden due to load-follow operation on the operator. Also, it can accommodate the frequen-cy control, which requires the plant to respond to the unexpected demand. The Mode K design concepts were tested using simulation responses of Yonggwang Units 3&4, the reference plants for the Korean Standardized Nuclear Power Plants. The results illustrate that the Mode K is an adequate operation mode to provide practical load-follow capabilities for the Korean Standardized Nuclear Power Plants.

  • PDF

Shape Optimization for Prolonging Fatigue Life of a Structure (구조물의 피로수명 향상을 위한 형상 최적화)

  • Han, Seok-Yeong;Song, Si-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1512-1519
    • /
    • 2002
  • Most of mechanical failures are caused by repeated loadings and therefore they are strongly related to fatigue. To avoid the failures caused by fatigue, determination of an optimal shape of a structure is one of the very important factors in the initial design stage. Shape optimization fer two types of specimens, which are very typical ones in opening mode in fracture mechanics, was accomplished by the linear elastic fracture mechanics and the growth-strain method in this study. Also shape optimization for a cantilever beam in mixed mode was carried out by the same techniques. The linear elastic fracture mechanics was used to estimate stress intensity factors and fatigue lives. And the growth-strain method was used to optimize the shape of the initial shape of the specimens. From the results of the shape optimization, it was found that shapes of two types of specimens and a cantilever beam optimized by the growth-strain method prolong their fatigue lives significantly. Therefore, it was verified that the growth-strain method is an appropriate technique for shape optimization of a structure having a crack.

A Study on the Propagation Characteristics of W-type Single Mode Fiber with Dual Shape Core (이중형코어를 갖는 W형 단일모드 광섬유의 전파특성에 대한 연구)

  • 김정근;이대형;최병하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.1
    • /
    • pp.57-63
    • /
    • 1991
  • In this paper, propagation characteristics of W-type single mode fiber with dual shape core is investigeted theoretically. Design parameters of DSC(dual shape core) W-type single mode fiber with very low dispersion over a wide wavelength range are computed using scalar approximation. The results have larger core radius and stronger confinement for mode field distribution in core than conventional W-type fiber with single shape core.

  • PDF

Shape Optimization of Structures in Opening Mode (열림 파괴양식에 대한 구조물의 형상 최적화)

  • 한석영;송시엽
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 2002
  • Most of mechanical failures are caused by repeated loadings and therefore they are strongly related to fatigue. To avoid the failures caused by fatigue, determination of an optimal shape of a structure is one of the very important factors in the initial design stage. Shape optimization for three types of specimens, which are very typical ones in opening mode in fracture mechanics, was accomplished by the linear elastic fracture mechanics and the growth-strain method in this study. The linear elastic fracture mechanics was used to estimate stress intensity factors and fatigue lives. And the growth-strain method was used to optimize the shape of the initial shape of the specimens. From the results of the shape optimization, it was concluded that shapes of three types of specimens optimized by the growth-strain method prolong their fatigue lives very much.