• Title/Summary/Keyword: modal frequency analysis

Search Result 900, Processing Time 0.03 seconds

Experimental Modal Analysis for Understanding Dynamic Characteristics of BUS FULL BIW Assembly (버스차체 동특성 파악을 위한 실험 모드해석)

  • Lee, Joon-Ho;Kim, Gyeong-Ho;Park, Mi-You;Kim, Kyoung-Won;Song, Kyoung-Ho;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.68-73
    • /
    • 2002
  • It is necessary first to understand dynamic characteristics of bus full BIW assembly for fatigue endurance analysis. FE model has been used usually for analyzing the dynamic behavior of structures. A lot of experience and effort, however, is necessary to make the credible FE model. Experimental modal analysis of structures has been performed to verify the credibility of initial FE model and to update the model. In this work, experimental modal analysis was performed to understand dynamic characteristics of bus full BIW assembly in free-free boundary condition and the result was used to verify the initial FE model. In addition, some practical techniques, which were used in this experiment, were mentioned.

  • PDF

Investigation of the Cause of High Vibration in a Low Pressure Turbine Casing with Manufacturing Defects by Frequency Response Analysis (주파수 응답해석을 통한 제작공차를 가지는 저압터빈 케이싱의 고진동 원인 규명)

  • Youn, Hee-Chul;Woo, Chang-Ki;Hwang, Jai-Kon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.463-468
    • /
    • 2015
  • High vibration of a low pressure (LP) turbine casing caused safety problems and life at the facility it was housed in. The main focus of this study was the cause of the high vibration in a low pressure turbine casing with manufacturing defects by frequency response analysis, compared with the results of experiments. Therefore, excited accelerations were obtained from the LP casing fundamental, and frequency responses were analyzed. The measurement and the modal analysis showed that the natural frequency of the LP turbine casing was 61.26 Hz and the excited frequency of the turbine rotor was 60.25 Hz. The manufacturing defect caused a decrease in the casing natural frequency and resulted in the high vibration of the casing because it moved close to the resonant frequency.

The Study of harmonic peaks removal for modal analysis of Rolling tire (Rolling Tire 모드해석을 위한 회전주기성분제거에 대한 연구)

  • Choi, Jeong-Hyun;Lee, Sang-Ju;Park, Ju-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.409-412
    • /
    • 2005
  • Just as the vibration modes of a beam are dependent on its end constraints or boundary conditions. Vibration modes of a tire are dependent on its patch and spindle constraints. This dependence is key to understanding the dynamic properties of a tire and is apparent in various analytical and experimental investigations in the literature. One of the main task in a modal analysis is the measurement of the Frequency Response Function (FRFs). Because all the subsequent analysis is based on these FRFs, their quality is critically important in obtaining accurate modal parameter estimates. In rotating systems, FRFs are frequently contaminated by harmonic peaks related to such factors as imbalance, misalignment. This harmonic peaks appear in the FRFs as sharp spikes, which can be erroneously treated in modal curve-fitting procedures as structural modes. The harmonic peaks removal method is demonstrated by application to modal analysis on rotating tires. The results show substantial improvement in FRF quality.

  • PDF

Modal Auxiliary Verbs in Japanese EFL Learners' Conversation: A Corpus-based Study

  • Nakayama, Shusaku
    • Asia Pacific Journal of Corpus Research
    • /
    • v.2 no.1
    • /
    • pp.23-34
    • /
    • 2021
  • This research examines Japanese non-native speakers' (JNNS) modal auxiliary verb use from two different perspectives: frequency of use and preferences for modalities. Additionally, error analysis is carried out to identify errors in modal use common among JNNSs. Their modal use is compared to that of English native speakers within a spoken dialogue corpus which is part of the International Corpus Network of Asian Learners' English. Research findings show at a statistically significant level that when compared to native speakers, JNNSs underuse past forms of modals and infrequently convey epistemic modality, indicating the possibility that JNNSs fail to express their opinions or thoughts indirectly when needed or to convey politeness appropriately. Error analysis identifies the following three types of common errors: (1) the use of incorrect tenses of modal verb phrases, (2) the use of inflected verb forms after modals, and (3) the non-use of main verbs after modals. The first type of error is largely because JNNSs do not master how to express past meanings of modals. The second and third types of errors seem to be due to first language transfer into second language acquisition and JNNSs' overgeneralization of the subject-verb agreement rules to modals respectively.

Effect of boundary conditions on modal parameters of the Run Yang Suspension Bridge

  • Li, Zhijun;Li, Aiqun;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.905-920
    • /
    • 2010
  • Changes in temperature, loads and boundary conditions may have effects on the dynamic properties of large civil structures. Taking the Run Yang Suspension Bridge as an example, modal properties obtained from ambient vibration tests and from the structural health monitoring system of the bridge are used to identify and evaluate the modal parameter variability. Comparisons of these modal parameters reveal that several low-order modes experience a significant change in frequency from the completion of the bridge to its operation. However, the correlation analysis between measured modal parameters and the temperature shows that temperature has a slight influence on the low-order modal frequencies. Therefore, this paper focuses on the effects of the boundary conditions on the dynamic behaviors of the suspension bridge. An analytical model is proposed to perform a sensitivity analysis on modal parameters of the bridge concerning the stiffness of expansion joints located at two ends of bridge girders. It is concluded that the boundary conditions have a significant influence on the low-order modal parameters of the suspension bridge. In addition, the influence of vehicle load on modal parameters is also investigated based on the proposed model.

Structural Dynamic System Reconstruction (구조물 동적시스템 재현기법)

  • Kim, Hyeung-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.308-312
    • /
    • 2002
  • To determine the natural frequencies and damping ratios of composite laminated plates, we present an officient modal parameter estimation technique by developing residual spectrum based structural system reconstruction. The modal parameters can be estimated from poles and residues of the system transfer functions, derived from the state space system matrices. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the modal coordinates of the structural dynamic system reconstructed from the experimental frequency response functions. These results are compared with those of finite element analysis and single-degree-of-freedom curve fitting.

TRACKING FOR HIGH-ORDER DAMPING OF THIN BEAM OSCILLATION

  • Yoo, Wan-Suk;Lee, Jae-Wook;Kim, Hyun-Woo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.984-989
    • /
    • 2008
  • An estimation of high-order damping in flexible multibody dynamic simulation is introduced in this paper. The suggested damping model based on the experimental modal analysis leads to more accurate correlation results comparing to the traditional linear damping model because it directly uses the modal parameters of each mode achieved from experiment even high frequency modes. The modal parameters until the 5th mode are extracted from the experimental modal testing of the flexible beam using a high speed camera. And using the measured damping ratio and natural frequency until the 5th mode, the generic damping model is constructed. Then, the ANCF (absolute Nodal Coordinate Formulation) simulation results are compared to experimental results until the 5th mode.

  • PDF

Analysis on the Squeal Noise of Wheel Brake System for Tilting Train (틸팅차량용 휠 제동장치의 스퀼 소음 해석)

  • Cha, Jung-Kwon;Park, Yeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.98-105
    • /
    • 2010
  • Squeal, a kind of self-excited vibration, is generated by the friction between the disc and the friction materials. It occurs at the ending stage of the braking process, and radiates and audible frequency range of 1 kHz to 10 kHz. Squeal is generated from unstability because of the coupling between the translation and rotation of the system. This instability is caused by the follower force and follower force is normal component of the friction force. In this paper modal analysis of wheel brake system was performed in order to predict the squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. A finite element model of that brake system was made. Some parts of a real brake was selected and modeled. Modal analysis method performs analyses of each brake system component. Experimental modal analysis was performed for each brake components and experimental results were compared with analytical results from FEM. To predict the dynamic unstability of a whole system, the complex eigenvalue analysis for assembly modeling of components confirmed by modal analysis is performed. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. The complex eigenvalue analysis results compared with real train test.

A Study on the Model Updating Procedures Using Modal Frequencies (모드 주파수를 이용한 모델 개선 과정에 대한 연구)

  • Jang, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.109-116
    • /
    • 2010
  • It is important to make a mechanical structure precisely and reasonably in predicting the dynamic characteristics, controlling the vibration, and designing the structure dynamics. In finite element analysis model updating is appropriate as the design parameter is used to analyze the dynamic system. The errors can be contained from the physical parameters and the element modeling. From the dynamic test, more precise dynamic characteristics can be obtained. In this paper, model updating algorithm is developed using frequency difference between experiment and calculation. Modal frequencies are obtained by experiment and finite element analysis for beams with various cross section and shapes which have added masses and holes in the middle. For plates with and without groove, experiment and analyses are carried out by applying free boundary conditions as well. Mass and stiffness matrices are updated by comparing test and analytical modal frequencies. The result shows that the updated frequencies become closer to the test frequencies in case that both matrices are updated. An improved analytical model is obtained by changing model parameters such that the discrepancy between test and finite element frequencies is minimized. For beam and plate models updating of mass and stiffness matrices can improve the dynamical behavior of the model by acting on the physical parameters such as masses and stiffness.

A Mathematical Approach for Modal Frequency Analysis in Actuators (운동방정식 유도에 의한 액추에이터 모드 주파수 분석)

  • Lee, Kyung Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.537-545
    • /
    • 2013
  • In this paper, the vibration for actuators having lens module, confined to lateral and torsional directions of suspensions, is described by mathematically analyzing its suspension configuration and motion. In order to prove the accuracy of this result, it is compared to a finite element analysis. Also it is shown that modal frequencies can be modified by changing design parameters in mathematical motion expressions.