• 제목/요약/키워드: modal correlation

검색결과 117건 처리시간 0.024초

Structural identification of Humber Bridge for performance prognosis

  • Rahbari, R.;Niu, J.;Brownjohn, J.M.W.;Koo, K.Y.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.665-682
    • /
    • 2015
  • Structural identification or St-Id is 'the parametric correlation of structural response characteristics predicted by a mathematical model with analogous characteristics derived from experimental measurements'. This paper describes a St-Id exercise on Humber Bridge that adopted a novel two-stage approach to first calibrate and then validate a mathematical model. This model was then used to predict effects of wind and temperature loads on global static deformation that would be practically impossible to observe. The first stage of the process was an ambient vibration survey in 2008 that used operational modal analysis to estimate a set of modes classified as vertical, torsional or lateral. In the more recent second stage a finite element model (FEM) was developed with an appropriate level of refinement to provide a corresponding set of modal properties. A series of manual adjustments to modal parameters such as cable tension and bearing stiffness resulted in a FEM that produced excellent correspondence for vertical and torsional modes, along with correspondence for the lower frequency lateral modes. In the third stage traffic, wind and temperature data along with deformation measurements from a sparse structural health monitoring system installed in 2011 were compared with equivalent predictions from the partially validated FEM. The match of static response between FEM and SHM data proved good enough for the FEM to be used to predict the un-measurable global deformed shape of the bridge due to vehicle and temperature effects but the FEM had limited capability to reproduce static effects of wind. In addition the FEM was used to show internal forces due to a heavy vehicle to to estimate the worst-case bearing movements under extreme combinations of wind, traffic and temperature loads. The paper shows that in this case, but with limitations, such a two-stage FEM calibration/validation process can be an effective tool for performance prognosis.

Structural modal identification and MCMC-based model updating by a Bayesian approach

  • Zhang, F.L.;Yang, Y.P.;Ye, X.W.;Yang, J.H.;Han, B.K.
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.631-639
    • /
    • 2019
  • Finite element analysis is one of the important methods to study the structural performance. Due to the simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under operational environment was collected. The first six translational modes of the structure were identified by the enhanced frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a benchmark model for structural health monitoring (SHM).

웨이블릿 교차상관관계를 이용한 변형체 선박의 휘핑 응답 식별 (Identification of Whipping Response using Wavelet Cross-Correlation)

  • 김유일;김정현;김용환
    • 대한조선학회논문집
    • /
    • 제51권2호
    • /
    • pp.122-129
    • /
    • 2014
  • Identification of the whipping response out of the combined wave-vibration response of a flexible sea going vessel is one of the most interesting research topic from ship designer's point of view. In order to achieve this goal, a novel methodology based on the wavelet cross-correlation technique was proposed in this paper. The cross-correlation of the wavelet power spectrum averaged across the frequency axis was introduced to check the similarity between the combined wave-vibration response and impulse response. The calculated cross-correlation of the wavelet power spectrum was normalized by the auto-correlation of the each spectrum with zero time lag, eventually providing the cross-correlation coefficient that stays between 0 and 1, precisely indicating the existence of the impulse response buried in the combined wave-vibration response. Additionally, the weight function was introduced while calculating the cross-correlation of the two spectrums in order to filter out the signal of lower frequency so that the accuracy of the similarity check becomes as high as possible. The validity of the proposed methodology was checked through the application to the artificially generated ideal combined wave-vibration signal, together with the more realistic signal obtained by running 3D hydroelasticity program WISH-Flex. The correspondence of the identified whipping instances between the results, one from the proposed method and the other from the calculated slamming modal force, was excellent.

Experimental test on bridge jointed twin-towered buildings to stochastic wind loads

  • Ni, Z.H.;He, C.K.;Xie, Z.N.;Shi, B.Q.;Chen, D.J.
    • Wind and Structures
    • /
    • 제4권1호
    • /
    • pp.63-72
    • /
    • 2001
  • This paper presents results of a study on wind loads and wind induced dynamic response of bridge jointed twin-towered buildings. Utilizing the high-frequency force balance technique, the drag and moment coefficients measured in wind tunnel tests, and the maximum acceleration rms values on the top floor of towers, are analyzed to examine the influence of building's plan shapes and of intervals between towers. The alongwind, acrosswind and torsional modal force spectra are investigated for generic bridge jointed twin-towered building models which cover twin squares, twin rhombuses, twin triangles, twin triangles with sharp corners cut off, twin rectangles and individual rectangle with the same outline aspect ratio as the twin rectangles. The analysis of the statistical correlation among three components of the aerodynamic force corroborated that the correlation between acrosswind and torsional forces is significant for bridge jointed twin-towered buildings.

주축 변위 신호를 이용한 밀링가공의 채터 감시 (Chatter Monitoring of Milling Process using Spindle Displacement Signal)

  • 장훈근;김일해;장동영
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.140-145
    • /
    • 2007
  • To improve productivity of a metal cutting process, it is required to monitor machining stability in real time. Since cutting environment is harsh against sensing conditions due to vibration, chip, and cutting fluid, etc., it is necessary to develop a robust and reliable sensing system for the practical application. In this work, a chatter monitoring system was developed and its effectiveness was proved. Spindle displacement caused by cutting was selected as a main monitoring parameter. A cylindrical capacitive displacement sensor was adopted. Chatter frequencies were identified through modal analysis. To quantify chatter vibrations, chatter correlation coefficient was introduced. The identification of the monitoring system showed a good agreement with the result of experiment.

우주 발사체 추진제 탱크 및 축소 1단 모델의 전산 모드 해석 연구 (Computational Modal Analyses for the Propellant Tank and Small-Scaled First-Stage Models of Liquid-Propulsion Launch Vehicles)

  • 심창훈;김근상;김동건;김인걸;박순홍;박재상
    • 항공우주시스템공학회지
    • /
    • 제12권3호
    • /
    • pp.18-25
    • /
    • 2018
  • 액체 추진 우주 발사체의 모드 시험을 대체 혹은 보완할 수 있는 신뢰성 있는 전산 모드 해석 기법의 정립을 위하여 액체 추진제 및 플렌지 조인트의 유한요소 모델링 기법을 정립하였다. 본 연구에서는 추진제 탱크 모델과 발사체 1단 축소 모델에 대하여 MSC.NASTRAN을 이용하여 전산 모드 해석을 수행 후, 모드 시험의 고유 진동수를 비교하여 모델링 및 해석 기법을 검증하였다. 추진제 탱크의 경우 가상질량 기법을 이용하여 액체 추진제를 모델링하였으며, 추진제 탱크의 종 모드 (bell mode)를 잘 예측하였다. 액체 추진제를 포함한 발사체 1단 축소 모델에 대하여, 보정된 재료 물성치와 RBE2 요소를 사용한 플렌지 조인트의 모델링 기법은 각각의 플렌지에서 24개의 볼트 조인트를 사용한 모델에 대하여 10% 이내의 오차의 1차 및 2차 굽힘 모드의 고유 진동수를 적절하게 계산하였다.

On the assessment of modal nonlinear pushover analysis for steel frames with semi-rigid connections

  • Zarfam, Panam;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.383-398
    • /
    • 2009
  • Applying nonlinear statistical analysis methods in estimating the performance of structures in earthquakes is strongly considered these days. This is due to the methods' simplicity, timely lower cost and reliable estimation in seismic responses in comparison with time-history nonlinear dynamic analysis. Among nonlinear methods, simplified to be incorporated in the future guidelines, Modal Pushover Analysis, known by the abbreviated name of MPA, simply models nonlinear behavior of structures; and presents a very proper estimation of nonlinear dynamic analysis using lateral load pattern appropriate to the mass. Mostly, two kinds of connecting joints, 'hinge' and 'rigid', are carried out in different type of steel structures. However, it should be highly considered that nominal hinge joints usually experience some percentages of fixity and nominal rigid connections do not employ totally rigid. Therefore, concerning the importance of these structures and the significant flexibility effect of connections on force distribution and elements deformation, these connections can be considered as semi-rigid with various percentages of fixity. Since it seems, the application and implementation of MPA method has not been studied on moment-resistant steel frames with semi rigid connections, this research focuses on this topic and issue. In this regard several rigid and semi-rigid steel bending frames with different percentages of fixity are selected. The structural design is performed based on weak beam and strong column. Followed by that, the MPA method is used as an approximated method and Nonlinear Response History Analysis (NL-RHA) as the exact one. Studying the performance of semi-rigid frames in height shows that MPA technique offers reasonably reliable results in these frames. The methods accuracy seems to decrease, when the number of stories increases and does decrease in correlation with the semi-rigidity percentages. This generally implies that the method can be used as a proper device in seismic estimation of different types of low and mid-rise buildings with semi-rigid connections.

유비쿼터스 환경의 상황인지 모델과 이를 활용한 멀티모달 인터랙션 디자인 프레임웍 개발에 관한 연구 (Ubiquitous Context-aware Modeling and Multi-Modal Interaction Design Framework)

  • 김현정;이현진
    • 디자인학연구
    • /
    • 제18권2호
    • /
    • pp.273-282
    • /
    • 2005
  • 본 연구는 유비쿼터스 컴퓨팅 환경구축에 활용하기 위한 상황인지 모델과 이를 활용한 멀티모달 인터랙션 디자인 프레임웍을 제안하였다. 먼저 상황인지 모델개발을 위해 사용자의 인터랙션 상황을 파악하는 방법과 수집된 상황의 의미를 추론하여 사용자 요구에 맞는 멀티모달 인터랙션 서비스를 제공하는 방법을 연구하였다. 또한 상황인지 모델(Context cube)을 활용한 멀티모달 인터랙션 디자인 프레임웍을 제안하였으며, 이 프레임웍의 활용성을 검증하는 사례연구를 수행하고, 개인화된 유비쿼터스 서비스 도출 및 이 서비스의 산업화 가능성을 제시하였다. 상황인지는 사용자의 기본 행위(Basic Activity), 공간에서의 사용자 위치 및 공간내의 기기 및 환경 요소, 시간 요소와 사용자의 일상적인 스케줄 정보 요소에 의해 파악할 수 있으며, 이러한 요소들을 종합하여 공간적인 개념의 상황인지 모델(Context Cube)을 개발함으로써, 구체적인 공간 모델 내에서의 다양하고 개인화 된 유비쿼터스 서비스의 제안이 가능하였다. 또한, 실제적인 사용자 시나리오에 의한 사례연구를 통해 개념 모델을 구축하는 과정 및 각 과정에서 요구되는 정보의 유형을 검증하고, 상황인지 모델에서의 구성요소의 내용과 배열 등을 정의함으로써 개념모델의 완성도를 높였으며, 상황인지 모델에서 표현되는 사용자의 인터랙션 특징을 바탕으로 멀티모달 인터랙션 디자인의 접근방법을 개발함으로서 이를 디자인 프레임웍으로 구체화할 수 있었다.

  • PDF

OMA of model steel structure retrofitted with CFRP using earthquake simulator

  • Kasimzade, Azer A.;Tuhta, Sertac
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.689-697
    • /
    • 2017
  • Nowadays, there are a great number of various structures that have been retrofitted by using different FRP Composites. Due to this, more researches need to be conducted to know more the characteristics of these structures, not only that but also a comparison among them before and after the retrofitting is needed. In this research, a model steel structure is tested using a bench-scale earthquake simulator on the shake table, using recorded micro tremor data, in order to get the dynamic behaviors. Beams of the model steel structure are then retrofitted by using CFRP composite, and then tested on the Quanser shake table by using the recorded micro tremor data. At this stage, it is needed to evaluate the dynamic behaviors of the retrofitted model steel structure. Various types of methods of OMA, such as EFDD, SSI, etc. are used to take action in the ambient responses. Having a purpose to learn more about the effects of FRP composite, experimental model analysis of both types (retrofitted and no-retrofitted models) is conducted to evaluate their dynamic behaviors. There is a provision of ambient excitation to the shake table by using recorded micro tremor ambient vibration data on ground level. Furthermore, the Enhanced Frequency Domain decomposition is used through output-only modal identification. At the end of this study, moderate correlation is obtained between mode shapes, periods and damping ratios. The aim of this research is to show and determine the effects of CFRP Composite implementation on structural responses of the model steel structure, in terms of changing its dynamical behaviors. The frequencies for model steel structure and the retrofitted model steel structure are shown to be 34.43% in average difference. Finally, it is shown that, in order to evaluate the period and rigidity of retrofitted structures, OMA might be used.

Structural evaluation of an existing steel natatorium by FEM and dynamic measurement

  • Liu, Wei;Gao, Wei-Cheng;Sun, Yi;Yu, Yan-Lei
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.507-526
    • /
    • 2009
  • Based on numerical and experimental methods, a systematic structural evaluation of a steel natatorium in service was carried out in detail in this paper. Planning of inspection tasks was proposed firstly according to some national codes in China in order to obtain the economic and reliable results. The field visual inspections and static computation were conducted in turn under in-service environmental conditions. Further a three-dimensional finite element model was developed according to its factual geometry properties obtained from the field inspection. An analytical modal analysis was performed to provide the analytical modal properties. The field vibration tests on the natatorium were conducted and then two different system identification methods were used to obtain the dynamic characteristics of the natatorium. A good correlation was achieved in results obtained from the two system identification methods and the finite element method (FEM). The numerical and experimental results demonstrated that the main structure of the natatorium in its present status is safe and it still satisfies the demand of the national codes in China. But the roof system such as purlines and skeletons must be removed and rebuilt completely. Moreover the system identification results showed that field vibration test is sufficient to identify the reliable dynamic properties of the natatorium. The constructive suggestion on structural evaluation of the natatorium is that periodic assessment work must be maintained to ensure the natatorium's safety in the future.