• Title/Summary/Keyword: modal control

Search Result 463, Processing Time 0.035 seconds

Active Vibration Control of a Plate Using the Distributed Modal Sensitivity (분포모달감도를 이용한 평판의 능동진동제어)

  • 송철기;박재상;이장무;황진권;최종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.320-325
    • /
    • 1995
  • This study deals with the active vibration control system for an all-clamped rectangular plate with piezoceramic actuators and sensors. A line nonent algorithm (LMA) with the distributed modal sensitivity(DMS) is proposed to reduce the structural vibrations effectively and to select the optimal locations and the optimal directions (skewed angles) of uniform piezoelectric actuators or sensors. Experimental results show that eachmode can attenuated byabout 10 .approx. 13 dB in case a piezoelectric actuator generate the psuedo-random disturbances that excite the plate modes.

  • PDF

Design of Independent Modal Space Controller using Virtual Passive Approach (가상수동형 제어기를 이용한 독립모달공간 제어기법)

  • 황재혁;박홍조;유병성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.301-307
    • /
    • 1997
  • In this study, a new modified independent modal space control (IMSC), which relaxes the fundamental hardware limitation of IMSC, is suggested to handle vibration control problems using a virtual passive controller. This method has adapted a new stable switching algorithm between controlled modes and a virtual vibration absorber as a virtual passive controller in the independent modal space. It has been found that the new modified IMSC suggested in this paper, which can reduce the number of actuators, is shown to be simple and efficient in a realistic example of vibration control of a cantilever beam.

  • PDF

Tuning Fork Analysis using FEM and FEM (FEM과 BEM을 사용한 소리 굽쇠 분석)

  • Jarng Soon Suck;Lee Je Hyeong;Choi Eun Yeong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.465-468
    • /
    • 2002
  • An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method (FEM) and Boundary Element Method (BEM). The first three natural frequencies were calculated by the FEM modal analysis. Then the change of the modal frequencies was examined with the variation of the tuning fork length and width. Analytical model equations were derived from the numerically relating results of the modal frequency-tuning fork length by approximating minimization. Finally the BEM was used for the sound pressure field calculation from the structural displacement data.

  • PDF

A Case Study on the Policy Alternatives of Railway Modal-shift (철도 모달시프트 정책대안 사례 연구)

  • Kim, Young-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.477-483
    • /
    • 2011
  • Climate changes and environmental pollution problems are continuing every year. In Korea, the carbon dioxide(CO2) emissions by the transport sector reached around 20% of pollution. Many countries are enforcing the pollution-control policy. Korean government has introduced the modal shift grants as well as in other countries. In case of nation's transportation plan, the policy basis of green distribution is emphasized. However, the shipper and logistics company have low interests in the modal shift as the massive transportation system. The purpose of this paper is that I studied the policy alternatives for the modal shift of foreign railways., And also I studied the difficult problems at altering the railway freight from domestic road freight and I suggested the alternatives of modal shift to solve those problems.

  • PDF

A Multi-Modal Complex Motion Authoring Tool for Creating Robot Contents

  • Seok, Kwang-Ho;Kim, Yoon-Sang
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.924-932
    • /
    • 2010
  • This paper proposes a multi-modal complex motion authoring tool for creating robot contents. The proposed tool is user-friendly and allows general users without much knowledge about robots, including children, women and the elderly, to easily edit and modify robot contents. Furthermore, the tool uses multi-modal data including graphic motion, voice and music to simulate user-created robot contents in the 3D virtual environment. This allows the user to not only view the authoring process in real time but also transmit the final authored contents to control the robot. The validity of the proposed tool was examined based on simulations using the authored multi-modal complex motion robot contents as well as experiments of actual robot motions.

Enhanced least square complex frequency method for operational modal analysis of noisy data

  • Akrami, V.;Zamani, S. Majid
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.263-273
    • /
    • 2018
  • Operational modal analysis is being widely used in aerospace, mechanical and civil engineering. Common research fields include optimal design and rehabilitation under dynamic loads, structural health monitoring, modification and control of dynamic response and analytical model updating. In many practical cases, influence of noise contamination in the recorded data makes it difficult to identify the modal parameters accurately. In this paper, an improved frequency domain method called Enhanced Least Square Complex Frequency (eLSCF) is developed to extract modal parameters from noisy recorded data. The proposed method makes the use of pre-defined approximate mode shape vectors to refine the cross-power spectral density matrix and extract fundamental frequency for the mode of interest. The efficiency of the proposed method is illustrated using an example five story shear frame loaded by random excitation and different noise signals.

Structural Dynamic System Reconstruction for Modal Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.150-150
    • /
    • 2000
  • We as modal parameter estimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of multivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre- and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios on be estimated using tile coordinates of the structural system reconstructed fro the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting.

  • PDF

Design of an effective controlle via disturbance accommodating left eigenstructure assignment

  • Choi, Jae-Weon;Lee, Jang-Gyu;Kim, Youdan;Kang, Taesam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.412-419
    • /
    • 1993
  • The transient responses of a linear system having undesired disturbances are dominantly governed by the system's left eigenstructure(eigenvalues/left eigenvectors). In control system design problem of altering the transient response of the system, both the controllability and the disturbance suppressibility, should be considered simultaneously to obtain a robust, effective controller. The controllability of the system may be degraded if the left eigenstructure is chosen to suppress the disturbance, or vice versa. In this paper, first, proposed are a modal disturbance suppressibility measure and an improved version of the modal controllability measure suggested by Hamdan and Nayfeh. Second, a simple and general left eigenstructure assignment scheme, considering both the proposed modal disturbance suppressibility measure and the improved version of modal controllability measure, is suggested. When the previous works are applied to assign the left eigenvectors may differ from the desired ones. But the proposed left eigenstructure assignment scheme makes it possible to achieve the desired colsed-loop eigenvalues exactly, provided the desired left eigenvectors reside in the achievable subspace. In case the desired left eigenvectors do not reside in the achievable subspace, the closed-loop eigenvalues are achieved exactly and the left eigenvectors are assigned to the best possible set of eigenvectors in the least square sense. Finally, a numerical example is included to confirm and demonstrate the usefulness of our propositions and to illustrate the proposed design scheme.

  • PDF

Modal strength reduction factors for seismic design of plane steel frames

  • Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.65-88
    • /
    • 2011
  • A new method for the seismic design of plane steel moment resisting frames is developed. This method determines the design base shear of a plane steel frame through modal synthesis and spectrum analysis utilizing different values of the strength reduction (behavior) factor for the modes considered instead of a single common value of that factor for all these modes as it is the case with current seismic codes. The values of these modal strength reduction factors are derived with the aid of a) design equations that provide equivalent linear modal damping ratios for steel moment resisting frames as functions of period, allowable interstorey drift and damage levels and b) the damping reduction factor that modifies elastic acceleration spectra for high levels of damping. Thus, a new performance-based design method is established. The direct dependence of the modal strength reduction factor on desired interstorey drift and damage levels permits the control of deformations without their determination and secures that deformations will not exceed these levels. By means of certain seismic design examples presented herein, it is demonstrated that the use of different values for the strength reduction factor per mode instead of a single common value for all modes, leads to more accurate results in a more rational way than the code-based ones.

Modal Control of Adaptive Optical System for Wavefront Correction (파면보정을 위한 적응광학계의 Modal 제어)

  • 서영석;백성훈;박승규;김철중;양준묵
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.32-33
    • /
    • 2002
  • 적응광학계(adaptive optics system ; AO)는 파면을 파면측정장치로 측정하고 제어용 컴퓨터를 사용하여 파면보정장치를 구동함으로써 파면의 왜곡 및 수차를 보정하는 장치로, 최근 천문학 및 의료분야에서 활용되고 있다. 적응광학계의 제어는 파면을 영역별로 나누어 제어하는 zonal 방법과 모드로부터 제어하는 modal 방법이 있다. 본 연구에서는 파면 측정 장치(wavefront sensor ; WFS)인 Shack-Hartmann sensor로 측정된 파면의 기울기 정보로부터 Zernike 다항식의 계수를 계산하여 수차의 정보를 구현하고, 왜곡된 파면을 실시간으로 보정하기 위하여 Zernike 계수로부터 위상을 재구성한 후 보정장치인 변형거울을 제어하는 방법으로 파면을 보정하였다. (중략)

  • PDF