• Title/Summary/Keyword: mobile phone sensors

Search Result 83, Processing Time 0.025 seconds

A Wireless ECG Measurement System based on the Zigbee USN (Zigbee USN 기반의 무선 ECG 측정 시스템)

  • Chang, Yun-Seok;Kim, Bo-Yeon
    • The KIPS Transactions:PartC
    • /
    • v.18C no.3
    • /
    • pp.195-198
    • /
    • 2011
  • Recent expansion of the ubiquitous environment and improvement of the USN give lots of U-healthcare systems. In this paper, we design and implement a wireless ECG measurement system that can send ECG signals among the sensors and collector. It can also give almost the same precision as a hospital ECG system with mobility. The most important fact of the mobile ECG system is the signal data connectivity among the sensors and device such as signal cables or wires. we can eliminate the signal cable through the Zigbee sender and collector via implementing Zigbee-SD communication system that can receive the ECG signal data. We also implement ECG app software on the smart phone that can analyze and show the data results directly. It can give lots of mobility and usability under ubiquitous environment and would be a very efficient wireless ECG system for U-healthcare service.

A Study on Mobile Personalized Healthcare Management System (모바일 개인건강관리시스템에 관한 연구)

  • Lee, Nan Kyung;Lee, Jong Ok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.6
    • /
    • pp.197-204
    • /
    • 2015
  • Recent changes in health care environment including aging population and prevalence of chronic disease encourage the adoption of new innovative technological solutions including wearable vital sensors, wireless networks, and smart phone. In this paper, we present an effective at-home lifestyle monitoring system that can be used for self-management and health intervention of patient himself in the Management-by-Exception perspectives. We implemented the filtering and queuing algorithms as a preprocessor of monitoring system to enhance efficiency of proposed system, and the effective UX design for self-management of patients themselves. The 94,467 actual clinic data was used to test the efficiency of the proposed system. As as a result, 64.8% of the incoming vital data was identified to be filtered out.

A Study on Local Area Weather Condition Monitoring System in WSN and CDMA (무선센서네트워크와 CDMA망을 이용한 국지적 기상모니터링 시스템)

  • Chung, Wan-Young;Jung, Sang-Joong;Kim, Jong-Jin;Kwon, Tae-Ha
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1713-1720
    • /
    • 2009
  • An local area weather condition monitoring system to minimize many disasters from the sudden change of weather condition in local and mountain ales is proposed. Firstly, the comparison of present state of the related monitoring systems and the possibility of realization with some merits are investigated. Moreover, this paper present direction of local area weather condition monitoring system based on integration of wireless sensor network and CDMA network following some case study. The sensor node for wireless sensor network and an interface dongle are fabricated for the system. The stand-alone software in cellular phone is also developed. Through the efficient integration of both networks, the measured weather condition data from sensors can be transmitted to the server or mobile to monitor with high reliability. The proposed monitoring system will guide new type of project in wireless sensor network and support alarm service of the sudden change of weather condition to mobile user from central official regulations.

Analysis of the Impact of Motion Recognition Sensor on Mobile Game by Compare Valuation Experiment (비교평가 실험으로 동작인식센서가 모바일게임에 미치는 영향분석)

  • Lee, Dae-Young;Sung, Jung-Hawn
    • Journal of Korea Game Society
    • /
    • v.9 no.5
    • /
    • pp.63-72
    • /
    • 2009
  • I-phone presented a new mobile control type by the introducing motion recognition sensor and that influenced on game application development so that led a lot of games using kinds of sensors. In this paper, we divided the game enjoyment into 5 factors for the embodiment of the sensor's influence direction on the enjoyment. We experimented two game, which have same content, different devices in using motion recognition sensor or not for clarifying the distinction between devices. As a experiment source game, we used Cooking Mama, as a experimental device, we used I-pod touch and NDS. This experiment shows a motion recognition sensor control's enjoyment is far superior to touch sensor. This sensor got high marks on every fun factors, stimulus, absorption, empathy, accomplishment and variation. Especially, stimulus and empathy showed great differences. In this case, we found the fact that extended communication between the gamer and the device can be fun.

  • PDF

Precision monitoring of radial growth of trees and micro-climate at a Korean Fir (Abies koreana Wilson) forest at 10 minutes interval in 2016 on Mt. Hallasan National Park, Jeju Island, Korea

  • Kim, Eun-Shik;Cho, Hong-Bum;Heo, Daeyoung;Kim, Nae-Soo;Kim, Young-Sun;Lee, Kyeseon;Lee, Sung-Hoon;Ryu, Jaehong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.226-245
    • /
    • 2019
  • To understand the dynamics of radial growth of trees and micro-climate at a site of Korean fir (Abies koreana Wilson) forest on high-altitude area of Mt. Hallasan National Park, Jeju Island, Korea, high precision dendrometers were installed on the stems of Korean fir trees, and the sensors for measuring micro-climate of the forest at 10 minutes interval were also installed at the forest. Data from the sensors were sent to nodes, collected to a gateway wireless, and transmitted to a data server using mobile phone communication system. By analyzing the radial growth data for the trees during the growing season in 2016, we can estimate that the radial growth of Korean fir trees initiated in late April to early May and ceased in late August to early September, which indicates that period for the radial growth was about 4 months in 2016. It is interesting to observe that the daily ambient temperature and the daily soil temperature at the depth of 20 cm coincided with the values of about 10 ℃ when the radial growth of the trees initiated in 2016. When the radial growth ceased, the values of the ambient temperature went down below about 15 ℃ and 16 ℃, respectively. While the ambient temperature and the soil temperature are evaluated to be the good indicators for the initiation and the cessation of radial growth, it becomes clear that radii of tree stems showed diurnal growth patterns affected by diurnal change of ambient temperature. In addition, the wetting and drying of the surface of the tree stems affected by precipitation became the additional factors that affect the expansion and shrinkage of the tree stems at the forest site. While it is interesting to note that the interrelationships among the micro-climatic factors at the forest site were well explained through this study, it should be recognized that the precision monitoring made possible with the application of high resolution sensors in the measurement of the radial increment combined with the observation of 10 minutes interval with aids of information and communication technology in the ecosystem observation.

IoT based Mobile Smart Monitoring System for Solar Power Generation (IoT 기반 모바일 스마트 태양광 발전 모니터링 시스템)

  • Lee, Jaejin;Kim, Kihun;Park, Soovin;Byun, Hyoungjune;Shim, Kyusung;An, Beongku
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.55-64
    • /
    • 2017
  • In this paper, we propose and implement an IoT based mobile smart monitoring system in the view point of safety inspection for solar power generation. The main features and contributions of proposed system are as follows. First, the proposed system model can evaluate periodically in the view point of safety inspection the conditions of the system and structure of solar power generation. Second, the proposed system automatically re-processes the measurement data of the system and structure for solar power generation and save it into database. Third, using the re-processed and saved information, the proposed system can provide the monitoring information with webpage form to both administrator and owner of solar power generation system, thus they can measure and confirm directly in the view point of safety inspection the conditions of the solar generation structure without visiting those places. Fourth, the provided web pages for the monitoring of solar power generation can be accessed regardless of the system structures. The performance evaluations of the proposed system show that the proposed monitoring system can save efficiently the data received from the sensors installed in the structure of solar power generation into the data base in the collecting server. And the proposed system can support that both administrator and user of solar power generation system access webpage in real time without considering places by using mobile phone and desktop computer and obtain the information for the conditions of the system and structure of solar power generation with graph forms.

Augmented Reality (AR)-Based Sensor Location Recognition and Data Visualization Technique for Structural Health Monitoring (구조물 건전성 모니터링을 위한 증강현실 기반 센서 위치인식 및 데이터시각화 기술)

  • Park, Woong Ki;Lee, Chang Gil;Park, Seung Hee;You, Young Jun;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • In recent years, numerous mega-size and complex civil infrastructures have been constructed worldwide. For the more precise construction and maintenance process management of these civil infrastructures, the application of a variety of smart sensor-based structural health monitoring (SHM) systems is required. The efficient management of both sensors and collected databases is also very important. Recently, several kinds of database access technologies using Quick Response (QR) code and Augmented Reality (AR) applications have been developed. These technologies provide software tools incorporated with mobile devices, such as smart phone, tablet PC and smart pad systems, so that databases can be accessed very quickly and easily. In this paper, an AR-based structural health monitoring technique is suggested for sensor management and the efficient access of databases collected from sensor networks that are distributed at target structures. The global positioning system (GPS) in mobile devices simultaneously recognizes the user location and sensor location, and calculates the distance between the two locations. In addition, the processed health monitoring results are sent from a main server to the user's mobile device, via the RSS (really simple syndication) feed format. It can be confirmed that the AR-based structural health monitoring technique is very useful for the real-time construction process management of numerous mega-size and complex civil infrastructures.

Development of a smart model for Lentinula edodes cultivation based on ICT (ICT 기반 표고버섯 스마트 재배시설 모델개발)

  • Kim, In-Yeop;Kwon, Hyeong-il;Hwang, In-Ho;Lee, Won-Ho;No, Jong-Hyun;Choi, Sun-Gyu;Ko, Han-Gyu;Koo, Chang-Duk
    • Journal of Mushroom
    • /
    • v.16 no.2
    • /
    • pp.125-129
    • /
    • 2018
  • In order to develop a smart cultivation facility based on ICT (Information Communication Technology), a cultivation house was selected. Sensor devices were installed to monitor any changes in the cultivation environment. A control panel was constructed to monitor and control the data on environmental changes collected by the sensors. To efficiently manage the proceedings of the cultivation environment, the cultivation process was divided into 4 stages. We designed an environmental control module using these processes. PC and mobile phone software were designed for remote monitoring and control to develop a smart cultivation system that can conveniently manage the cultivation environment and produce mushrooms in a more stable manner.

A Study on IoT Service for Game Development (게임 개발을 위한 IoT 서비스)

  • Lee, MyounJae
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.291-297
    • /
    • 2015
  • The basic idea of IoT(Internet of Things) is interconnection and cooperation with a variety of things in real life such as Radio-Frequency Identification(RFID) tags, sensors, mobile phone, etc, through internet. IoT technologies which applied to these fields consist of sensor network technology and middleware, application. Currently, IoT technology is applied to various fields such as health care, home care, automotive, transportation, construction, agriculture, environment, food, and etc, based on its technologies. This paper focuses on discussion of the IoT development trend in game field. In order to achieve this purpose, first, the IoT technologies for game development based on sensor network technology and middleware, application is mentioned. Second, covers serious game and gamification that is expected to be a growing that is expected to be a growing, by applying IoT technologies to the game field. It can help for game developers by using IoT technologies.

Based on MQTT and Node-RED Implementation of a Smart Farm System that stores MongoDB (MQTT와 Node-RED를 기반한 MongoDB로 저장 하는 스마트 팜 시스템 구현)

  • Hong-Jin Park
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.256-264
    • /
    • 2023
  • Smart farm technology using IoT is one of the technologies that can increase productivity and improve the quality of agricultural products in agriculture, which is facing difficulties due to the decline in rural population, lack of rural manpower due to aging, and increase in diseases and pests due to climate change. . Smart farms using existing IoT simply monitor farms, implement smart plant growers, and have automatic greenhouse opening and closing systems. This paper implements a smart farm system based on MQTT, an industry standard protocol for the Internet of Things, and Node-RED, a representative development middleware for the Internet of Things. First, data is extracted from Arduino sensors, and data is collected and transmitted from IoT devices using the MQTT protocol. Then, Node-RED is used to process MQTT messages and store the sensing data in real time in MongoDB, a representative NoSQL, to store the data. Through this smart farm system, farm managers can use a computer or mobile phone to check sensing information on the smart farm in real time, anytime, anywhere, without restrictions on time and space.