• Title/Summary/Keyword: mobile modeling

Search Result 738, Processing Time 0.026 seconds

Visual Sensor Design and Environment Modeling for Autonomous Mobile Welding Robots (자율 주행 용접 로봇을 위한 시각 센서 개발과 환경 모델링)

  • Kim, Min-Yeong;Jo, Hyeong-Seok;Kim, Jae-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.776-787
    • /
    • 2002
  • Automation of welding process in shipyards is ultimately necessary, since the welding site is spatially enclosed by floors and girders, and therefore welding operators are exposed to hostile working conditions. To solve this problem, a welding mobile robot that can navigate autonomously within the enclosure has been developed. To achieve the welding task in the closed space, the robotic welding system needs a sensor system for the working environment recognition and the weld seam tracking, and a specially designed environment recognition strategy. In this paper, a three-dimensional laser vision system is developed based on the optical triangulation technology in order to provide robots with 3D work environmental map. Using this sensor system, a spatial filter based on neural network technology is designed for extracting the center of laser stripe, and evaluated in various situations. An environment modeling algorithm structure is proposed and tested, which is composed of the laser scanning module for 3D voxel modeling and the plane reconstruction module for mobile robot localization. Finally, an environmental recognition strategy for welding mobile robot is developed in order to recognize the work environments efficiently. The design of the sensor system, the algorithm for sensing the partially structured environment with plane segments, and the recognition strategy and tactics for sensing the work environment are described and discussed with a series of experiments in detail.

Applying the Cloud Computing Technology for Mobile BIM based Project Management Information System (모바일 BIM 공사관리시스템을 위한 클라우드 컴퓨팅 기술 활용 방안)

  • Lee, Jong-Ho;Eom, Shin-Jo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.145-148
    • /
    • 2011
  • As a futuristic construction model, building information model(BIM) based project management system(PMIS) and mobile PMIS have been showing visible sign. However, researches on the 3D BIM based PMIS using mobile device are hard to find, result from limitation of mobile device application(slow speed at huge BIM file, display size, and etc.) and undefined standard of business processes. Therefore, this research aims at studying feasibility of mobile BIM PMIS based on cloud computing as a business model. In case of applying mobile BIM PMIS, 3D drawings and integrated building informations are possible on mobile devices in real time. it would support increasing the productivity of project participants as designer, engineer, supervisor, and etc. Globally, BIM based PMIS and Mobile BIM system, cloud computing based mobile BIM simulator are in the concept or experimental phase, therefore it is possible to secure global leading technology of IT and construction merger in the mobile BIM.

  • PDF

The Determinants of Usefulness and Intention in Mobile Game Service (모바일 게임 서비스에서 유용성과 수용의도 결정요인에 관한 연구)

  • Han, Hui-Seon;Park, Gi-Ho;Jo, Jae-Wan
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.399-407
    • /
    • 2006
  • This study tried to fine the determine of intention to mobile game service acceptance. Our research proposes the theoretical model consisting of factors such as perceived usefulness, perceived ease of using the mobiliphone, perceived price. The data were analyzed using LISREL based on th structural equation modeling, a second-generation multivariate technique. The result show that the perceived usefulness have significant effects on the mobile game service acceptance.

  • PDF

MODELING AND CONTROL STRATEGIES FOR DYNAMICAL OBSTACLE AVOIDANCE BY MOBILE ROBOT

  • Zhu, Q.;Loh, N.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.643-648
    • /
    • 1989
  • This paper presents a theoretic study and computer simulation of models and approaches for dynamical obstacle avoidance by mobile robots. The movement of obstacles in unknown environment is described by any one or a combination of three models. The control strategy of the mobile robots is formulated based on one of three approaches. A trajectory-guided control strategy for dynamical obstacle avoidance has been developed. The method greatly simplifies the control process of mobile robots, and is computationally attractive.

  • PDF

Mobile Resource Reliability-based Job Scheduling for Mobile Grid

  • Jang, Sung-Ho;Lee, Jong-Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.83-104
    • /
    • 2011
  • Mobile grid is a combination of grid computing and mobile computing to build grid systems in a wireless mobile environment. The development of network technology is assisting in realizing mobile grid. Mobile grid based on established grid infrastructures needs effective resource management and reliable job scheduling because mobile grid utilizes not only static grid resources but also dynamic grid resources with mobility. However, mobile devices are considered as unavailable resources in traditional grids. Mobile resources should be integrated into existing grid sites. Therefore, this paper presents a mobile grid middleware interconnecting existing grid infrastructures with mobile resources and a mobile service agent installed on the mobile resources. This paper also proposes a mobile resource reliability-based job scheduling model in order to overcome the unreliability of wireless mobile devices and guarantee stable and reliable job processing. In the proposed job scheduling model, the mobile service agent calculates the mobile resource reliability of each resource by using diverse reliability metrics and predicts it. The mobile grid middleware allocated jobs to mobile resources by predicted mobile resource reliability. We implemented a simulation model that simplifies various functions of the proposed job scheduling model by using the DEVS (Discrete Event System Specification) which is the formalism for modeling and analyzing a general system. We also conducted diverse experiments for performance evaluation. Experimental results demonstrate that the proposed model can assist in improving the performance of mobile grid in comparison with existing job scheduling models.

Identifying Considerations for Developing SLAM-based Mobile Scan Backpack System for Rapid Building Scanning (신속한 건축물 스캔을 위한 SLAM기반 이동형 스캔백팩 시스템 개발 고려사항 도출)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.312-320
    • /
    • 2020
  • 3D scanning began in the field of manufacturing. In the construction field, a BIM (Building Information Modeling)-based 3D modeling environment was developed and used for the overall construction, such as factory prefabrication, structure construction inspection, plant facility, bridge, tunnel structure inspection using 3D scanning technology. LiDARs have higher accuracy and density than mobile scanners but require longer registration times and data processing. On the other hand, in interior building space management, relatively high accuracy is not needed, and the user can conveniently move with a mobile scan system. This study derives considerations for the development of Simultaneous Localization and Mapping (SLAM)-based Scan Backpack systems that move freely and support real-time point cloud registration. This paper proposes the mobile scan system, framework, and component structure to derive the considerations and improve scan productivity. Prototype development was carried out in two stages, SLAM and ScanBackpack, to derive the considerations and analyze the results.

Design and Performance Evaluation of a 3-DOF Mobile Microrobot for Micromanipulation

  • Park, Jungyul;Kim, Deok-Ho;Kim, Byungkyu;Kim, Taesung;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1268-1275
    • /
    • 2003
  • In this paper, a compact 3-DOF mobile microrobot with sub-micron resolution is presented. It has many outstanding features : it is as small as a coin ; its precision is of sub-micrometer resolution on the plane ; it has an unlimited travel range ; and it has simple and compact mechanisms and structures which can be realized at low cost. With the impact actuating mechanism, this system enable both fast coarse motion and highly precise fine motion with a pulse wave input voltage controlled. The 1 -DOF impact actuating mechanism is modeled by taking into consideration the friction between the piezoelectric actuator and base. This modeling technique is extended to simulate the motion of the 3-DOF mobile robot. In addition, experiments are conducted to verify that the simulations accurately represent the real system. The modeling and simulation results will be used to design the model-based controller for the target system. The developed system can be used as a robotic positioning device in the micromanipulation system that determines the position of micro-sized components or particles in a small space, or assemble them in the meso-scale structure.

Kinematic/dynamic modeling and analysis of a 3 degree-of-freedom redundantly actuated mobile robot (세바퀴 여유구동 모바일 로봇의 기구학/동력학 모델링 및 해석)

  • Park, Seung;Lee, Byung-Joo;Kim, Hee-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.528-531
    • /
    • 1997
  • This paper deals with the kinematic and dynamic modeling of a 3 degree-of-freedom redundantly actuated mobile robot for the purpose of analysis and control. Each wheel is driven by two motors for steering and driving. Therefore, the system becomes force-redundant since the number of input variable is greater than the number of output variable. The kinematic and dynamic models in terms of three independent joint variables are derived. Also, a load distribution method to determine the input loads is introduced. Finally we demonstrate the feasibility of the proposed algorithms through simulation.

  • PDF

Generalized Kinematics Modeling of Wheeled Mobile Robots (바퀴형 이동로봇의 기구학)

  • Shin, Dong-Hun;Park, Kyung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.118-125
    • /
    • 2002
  • The previous kinematic analysis of wheeled mobile robots(WMRs) is performed in an ad-hoc manner, while those of the robot manipulators are done in a consistent way using the coordinate system assignment and the homogeneous transformation matrix. This paper shows why the method for the robot manipulators cannot be used directly to the WMRs and proposes the method for the WMRs, which contains modeling the wheel with the Sheth-Uicker notation and the homogeneous transformation. The proposed method enable us to model the velocity kinematics of the WMRs in a consistent way. As an implementation of the proposed method, the Jacobian matrices were obtained for conventional steered wheel and non-steered wheel respectively and the forward and inverse velocity kinematic solutions were calculated fur a tricycle typed WMR. We hope that our proposed method comes to hold an equivalent roles for WMRs, as that of the manipulators does for the robot manipulators.

Korean Students' Intentions to Use Mobile-Assisted Language Learning: Applying the Technology Acceptance Model

  • Kim, Gyoo-mi;Lee, Sang-jun
    • International Journal of Contents
    • /
    • v.12 no.3
    • /
    • pp.47-53
    • /
    • 2016
  • The purpose of this study was to examine how Korean students accept and use mobile-assisted language learning (MALL) and investigate related factors that potentially affect MALL usage. The participants were 244 undergraduate students who were surveyed with a questionnaire. The research model, which included students' self-efficacy, content reliability, interactivity, perceived enjoyment, perceived usefulness, perceived ease of use, attitude, and behavioral intention to use MALL, was developed based on the technology acceptance model (TAM). The structural equation modeling (SEM) technique was employed in order to analyze the overall results of modified TAM and the research model. The results indicated that TAM was a good theoretical tool to understand students' acceptance of MALL. In addition, all constructs, with the exception of self-efficacy and interactivity, had significant effects on students' acceptance possibilities of MALL. Limitations and suggestions for the further study are also presented.