• Title/Summary/Keyword: mixture lactic acid bacteria

Search Result 138, Processing Time 0.027 seconds

Efficacy of Mixture of Lactic Acid Bacteria (LAB) and Bifidobacteria Supplement in the Management of Constipation; Demonstration of Functionality in Animal and Clinical Trials (한국형 Bifidobacterium longum SPM1205 혼합제제의 변비 개선 효과)

  • Kim, Jung-Rae;Lee, Do-Kyung;Baek, Eun-Hye;An, Hyang-Mi;Yang, Hwan-Jin;Kim, Mi-Jin;Choi, Kyung-Soon;Yun, Mi-Eun;Jung, Yi-Jung;Oh, Pok-Ja;Chung, Myung-Jun;Ha, Nam-Joo
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.52-62
    • /
    • 2010
  • The aim of this study was to evaluated the efficacy of mixture of Lactic Acid Bacteria (LAB) and bifidobacteria supplement, which are contained with Lactobacillus acidophilus, Bifidobacterium longum SPM1205, and Pediococcus pentosaceus for the management of constipation in animal model and clinical trials. 5 ICR mice and 4 female constipation subjects were orally taken mixture of LAB and bifidobacteria for 2 weeks. We investigated the number of fecal LAB and harmful enzymes activities before and after mixture of LAB and bifidobacteria application. As a result, fecal LAB count was increased and harmful enzymes activities of intestinal microflora were generally decreased after mixture of LAB and bifidobacteria application. Also, 61 female subjects were randomly assigned to receive either mixture of LAB and bifidobacteria or lactose and were taken three times a day for 2 weeks. Then, we analyzed mixture of LAB and bifidobacteria effect through the questionnaires. Daily consumption of this mixture of LAB and bifidobacteria improved the constipation in constipation group (56.3%) compared with lactose application group (26.7%). Furthermore, after mixture of LAB and bifidobacteria treatment, frequency of hard stool decreased from 0.22 to 0.03. These results indicated that mixture of LAB and bifidobacteria application is effective to improve the constipation.

Production of D-Lactic Acid from DL-Lactonitrile by Pseudomonas sp. (Pseudomonas sp.에 의한 DL-Iactonitrile로부터 D-lactic acid의 생산)

  • 김현수;황인균;정남현;방원기
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.373-379
    • /
    • 2002
  • By using DL-acetonitrile as enzyme inducer, 90 bacteria were isolated from a field soil. Among the isolated strains, the strain WJ-003 showed the highest activity for production of D-lactic acid from DL-lactonitrile, and was partially identified as Pseudomonas sp. The production condition of D-lactic acid from DL-lactonitrile using resting cells as an enzyme source was optimized as follows: the reaction mixture contained 10 mM of DL-lactonitrile, 20 g of wet cells in 11 of 20 mM potassium phosphate buffer (pH 7.0) and the reaction was carried out at $30^{\circ}C$. After 18 h of reaction, 0.843 g/l of D-lactic acid was produced which corresponded to a conversion ratio of 93.7% and an optical purity of 99.8%. Additionally, when 10 mM of DL-lactonitrile was added once more to the reaction mixture at 14 h, 1.64 g/1 of D-lactic acid was produced after 28 h. In this experiment, the conversion ratio was 91.1% and optical purity 99.8%.

Pseudomonas sp. JH007에 의한 DL-2-Chloropropionic Acid로부터 D-Lactic Acid의 생산

  • 정자헌;황인균;방원기
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.357-363
    • /
    • 1996
  • For the production of D-lactic acid from DL-2-chloropropionic acid, about 80 strains of bacteria capable of assimilating DL-2-chloropropionic acid as a sole carbon and energy source were isolated from the soil. JH-007 strain that showed the higest productivity of D-lactic acid and didn't produce L-lactic acid from DL-2-chloropropionic acid was selected from them and identified as Pseudomonas sp. The optimal conditions for the production of D-lactic acid from DL-2-chloropropionic acid were examined. The resting cells of JH-007 cultured in LB medium containing 3 g/l of DL-2-chloropropionic acid were used as an enzyme source. The reaction mixtures for the maximal production of D-lactic acid were consist of 10 g/l of resting cells and 3 g/l of DL-2-chloropropionic acid in 125 mM sodium carbonate buffer. The optimal pH for the reaction was 10.0 and the optimal temperature was 30$\circ$C. When 1 g/l of DL-2-chloropropionic acid was added intermittently to the reaction mixture under the above condition, 5.72 g/l of D-lactic acid was produced after incubation of 5 hrs. This amount of D-lactic acid corresponded to a 98.4% yields and the optical purity was 99.8%.

  • PDF

Physicochemical Properties and Antioxidative Activity of Fermented Rhodiola sachalinensis and Korean Red Ginseng Mixture by Lactobacillus acidophilus (Lactobacillus acidophilus을 이용한 홍경천과 홍삼 혼합 발효물의 이화학적 특성 및 항산화 활성)

  • Sung, Su-Kyung;Rhee, Young-Kyung;Cho, Chang-Won;Kim, Young-Chan;Lee, OK-Hwan;Hong, Hee-Do
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.358-365
    • /
    • 2013
  • The study was conducted to investigate the condition for mixed fermentation of Rhodilola sachalinensis with red ginseng using Lactobacillus acidophillus 128 and the changes of physicochemical properties and antioxidant activities before and after the lactic acid fermentation was examined. In the single fermentation of Rhodiola sachalinensis extract, the pH and titratable acidity rarely changed, and the number of lactic acid bacteria decreased greatly. On the other hand, in the lactic acid fermentation of Rhodiola sachalinensis-red ginseng mixed extract of 50% red ginseng content, the pH decreased, whereas the titratable acidity and the number of lactic acid bacteria increased. The solid content of optimal mixed extract for lactic acid fermentation was 0.5%. Sugar content decreased during fermentation, but total phenolic compounds tended to increase during fermentation. The salidroside and p-tyrosol content of the initial Rhodiola sachalinensis-red ginseng mixed extract was 419.5 mg% and 60.1 mg%, respectively; after fermentation, the salidroside content after lactic acid fermentation decreased greatly to 81.8 mg%, and the amount of p-tyrosol increased greatly to 324.9 mg%. The DPPH scavenging activity of Rhodiola sachalinensis-red ginseng mixed fermentate was 78.1% at 0.1% concentration, showing a tendency to increase as compared to 50.3% of Rhodiola sachalinensis-red ginseng mixed extract before the fermentation (p<0.05); it was a higher antioxidant activity as compared to the single fermentation of Rhodiola sachalinensis or red ginseng.

Antimicrobial Effects of a Bacteriocin Mixture from Lactic Acid Bacteria against Foodborne Pathogens (복합 박테리오신의 항균활성 및 축산식품 저장성 증진 효과)

  • 한경식;오세종;문용일
    • Food Science of Animal Resources
    • /
    • v.22 no.2
    • /
    • pp.164-171
    • /
    • 2002
  • The purpose of this study was to evaluate inhibitory activity of a bacteriocin mixture from lactic acid bacteria(LAB) against foodborne pathogens. Each bacteriocin solutions were prepared by growing nine strains of bacteriocin producers in MRS broth for 18~24 h followed by centrifugation(8000$\times$g, 20 min, 4$^{\circ}C$). Bacteriocins were purified from ammonium sulfate precipitation and were resuspended in 50 mM phosphate buffer(pH 7.0). Nine bacteriocins were mixed together and then allowed to freeze at -2$0^{\circ}C$. The mixture of nine bacteriocins showed enhanced inhibitory activity compared to each of bacteriocins and inhibited the Gram negative pathogens including Escherichia coli 0157:H7, Klebsiella pneumoniae, Pseudomonas chlororaphis and Shigella sonnei. The mixture of bacteriocin solutions was significantly lower than controls when a freeze-dried bacteriocin mixture was added to frank sausage, Mozzarella cheese and pork loin. With addition of bacteriocin mixture, total mesophilic bacteria in pork loin were constant over storage period, whereas total mesophilic bacteria in Mozzarella cheese and frank sausang slightly increased. Total viable cells of control group increased during storage without bacteriocin treatment. Volatile base nitrogen content of pork loin during storage also increased significantly without bacteriocin treatment. The bacteriocin mixture was capable of inhibiting pathogenic and spoilage microorganisms and extending the shelf-life of cheese and meat products during storage.

Microbial Reduction in Kimchi Cabbage Leaves by Washing with Citric Acid and Ethanol (구연산과 에탄올 세척에 의한 배춧잎의 미생물 저감화)

  • Han, Eung Soo;Yang, Ji Hee
    • Food Engineering Progress
    • /
    • v.23 no.2
    • /
    • pp.112-117
    • /
    • 2019
  • The purpose of this study is to develop a method to cultivate lactic acid bacteria (LAB) as a by-product in the fermentation of kimchi through the use of Chinese cabbage leaves. A method to reduce the initial number of microorganisms using citric acid and ethanol to wash cabbage leaves was investigated. In this experiment, Chinese cabbage leaves were washed using a mixture of 3% citric acid and 7% ethanol and the washed cabbage leaves were juiced and used as a sample. The total microorganisms of kimchi cabbage juice (KCJ) was reduced from log 6.53 CFU/g to log 3.69 CFU/g by washing with citric acid and ethanol, and lactic acid bacteria from log 4.40 CFU/g to log 2.01 CFU/g. The salinity of KCJ was appropriate for the growth of lactic acid bacteria but the pH was too low. The yield of washing, juice extraction, and total were 80.82%, 79.32%, and 64.11%, respectively. KCJ made by washing with citric acid and ethanol was good for the culture broth of lactic acid bacteria.

Comparative Study on the Effects of Combined Treatments of Lactic Acid Bacteria and Cellulases on the Fermentation Characteristic and Chemical Composition of Rhodesgrass (Chloris gayana Kunth.) and Italian Ryegrass (Lolium multiflorum Lam.) Silages

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.525-530
    • /
    • 1999
  • Prior to ensiling Rhodesgrass (RG) and Italian ryegrass (lRG) were treated with lactic acid bacteria (LAB) or with LAB+cellulases to compare their fermentation characteristics and chemical compositions. LAB (Lactobacillus casei) was added to all ensiling materials (except the untreated control) of RG and IRG at a concentration of $1.0{\times}10^5\;cfu.g^{-1}$ fresh forage. The enzymes used were Acremoniumcellulase (A), Meicelase (M) or a mixture of both (AM). Each enzyme was applied at levels of 0.005, 0.01 and 0.02 % of fresh forage. The silages with each treatment were incubated at 20, 30 and $40^{\circ}C$ and stored for about 2 months. While no marked differences were found between the RG and IRG silages with various treatments on dry matter (DM), volatile basic nitrogen (VBN) and water soluble carbohydrate (WSC) contents, there were significant differences in pH value, and lactic acid and butyric acid contents. LAB inoculation did not affect the fermentation characteristics of either the RG or IRG silages. The combined treatments of LAB+cellulases improved the fermentation quality of both the RG and IRG silages as evidenced by the decrease in pH value and increase in lactic acid content. Increasing the amount of added cellulase resulted in a decrease in pH value and an increase in lactic acid content in both the RG and IRG silages. Cellulases A and AM had a greater effect than cellulase M on the fermentation quality of the RG and IRG silages. Incubation temperatures of 30 and $40^{\circ}C$ appeared to be more appropriate environments for stimulating good fermentation than $20^{\circ}C$.

PCR-based Identification of Microorganisms in a Kefir Grain

  • Koo, Won Hoe;Seo, Min-Gook;Ahn, Jung Hoon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.238-244
    • /
    • 2007
  • Nowadays many people are concerned about being healthy, and many dairy products are taken as health supplementary foods. Among dairy products, kefir, also called as Tibet mushroom, is a yogurt fermented by kefir grain, which is a mixture of lactic acid bacteria and yeasts. Although there are many empirical evidences that kefir is very influential for human body, the exact reason is not definitively discovered. Therefore, it would be useful to understand characteristics of a kefir grain and to categorize bacteria in a kefir grain. In this paper, molecular biological apparatus such as PCR, electrophoresis, PCR purification, DNA sequencing were used to identify and classify the species of lactic acid bacteria and yeast in a kefir grain. We used PCR-based identification method using 16S rRNA primer and Internal Transcribed Spacer (ITS) primer. We identified 6 different species which were selected on different medium. In addition, observation with scanning electron microscope (SEM) enabled us to grasp an external shape of the kefir grain. Although we found a limited number of microbial species, more intensive research are needed for extensive identification of microorganism species in Korean kefir grain.

  • PDF

The Mixed Effect of Salvia miltiorrhiza and Glycyrrhiza uralensis on the Shelf-life of Kimchi (김치숙성 중에 미치는 단삼과 감초의 혼합효과)

  • 이신호;조옥기;박나영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.858-863
    • /
    • 1998
  • The Mixed effect of Salvia miltiorrhiza and Glycyrrhiza uralensis(SG) on kimchi fermentation was investigated by measuring changes of physicochemical, icrobiological and sensory qualities of kimchi during fermentation. The pH of SG-added kimchi was a little higher than that of control during the fermentation. Titratable acidity, viable cell of total bacteria and lactic acid bacteria in mixed medicinal herbs(SG) added kimchi were changed more slowly than those in control. The inhibitory effect of the mixture on kimchi fermentation was increased as the concentration of the mixture was increased from 1% to 5%. Total bacteria and lactic acid bacteria of 3% and 5% SG-added kimchi reduced to 1.3~2.9 and 1.2~4.0 log10 cycle after 15 days fermentatin compared to control. The changes in texture of SG-added kimchi was a higher and sour taste of SG-containing kimchi excepts of 1% SG-added kimchi was more weak than that of control. Sensory score of flavor and overall acceptability did not show any significant difference between SG-added kimchi and control during fermentation. But SG-added kimchi decreased its sensory quality by 5% the other kimch.

  • PDF

Changes of Antioxidant Activity and the Isoflavone and Free Amino Acid Content of Fermented Tofu with Kimchi Ingredients and Lactic Acid Bacteria (김치양념과 유산균을 이용한 발효두부의 항산화 활성, 이소플라본 및 유리아미노산의 변화)

  • Kang, Kyoung-Myoung;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.1
    • /
    • pp.96-101
    • /
    • 2013
  • This study was carried out to investigate the changes in antioxidant activity, and the isoflavone and free amino acid content in fermented tofu of the ingredients of kimchi (red pepper, garlic, ginger, and anchovies) and lactic acid bacteria (Pediococcus acidilactici KL-6) during 24 weeks of fermentation at $20^{\circ}C$. The total polyphenol content of various types of fermented tofu such as the control (tofu with kimchi ingredients mixture), tofu and kimchi ingredients with lactic acid bacteria (TL), and tofu in pre-fermented kimchi ingredients with lactic acid bacteria (TPL) ranged from 156.34 to 165.17 mg/g, showing that TPL was significantly higher in terms of fermentation time (6 weeks) compared to others. The DPPH free radical scavenging activity of TPL (84.11%) was higher than that of the control (76.68%) and TL (78.95%) after 12 weeks fermentation at $20^{\circ}C$. The changes of nitrite scavenging activity and SOD-like activity in the tested tofu showed the same tendency as the DPPH free radical scavenging activity during 14 weeks fermentation TPL showed statistically significant levels of increased antioxidant activity, so we compared the isoflavone and free amino acid content. The isoflavone and free amino acid content of TPL was 2.34 mg/g and 20.81 mg/g after 14 weeks fermentation, respectively.