• 제목/요약/키워드: mixture flow rate

검색결과 463건 처리시간 0.023초

최대밀도이론을 이용한 아스팔트 혼합물의 배합설계에 관한 연구 (The Study of Asphalt Concrete Mixture Design Using Maximum Density Theory)

  • 이승한;박현묘;정용욱;장석수;김장욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.525-528
    • /
    • 2005
  • This study determines the best composite grade to minimize the void of aggregate mixture based on the maximum density theory in an attempt to suggest a mix proportion method design for asphalt mixtures. Study results show that the grading curve with the maximum mass per unit capacity of each aggregate mixture satisfied the KS standards and the optimum AP content to meet the optimal asphalt mixture void rate of 4$\%$ was 5.7$\%$, less than the optimum AP content of 6.5$\%$ suggested in the Marshal mix proportion method design. At the same time, the asphalt mixture produced based upon the suggested mix proportion method had a flow value 17$\%$ lower than that of asphalt mixture produced according to the Marshal method, while its density was greater by 0.06$\~$0.09. This suggests that the introduced mix proportion method design helps to improve the shape flexibility and crack-resistance of asphalt concrete.

  • PDF

가스터빈 모사 연소기에서 선회 확산 화염의 연소특성 해석 (Simulation of Methane Swirl Flame in a Gas Turbine Model Combustor)

  • 정대로;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.118-125
    • /
    • 2007
  • The firtst-order conditional moment closure (CMC) model is applied to CH4/air swirl diffusion flame in a gas turbine model combustor. The flow and mixing fields are calculated by fast chemistry assumption with SLFM library and a beta function pdf for mixture fraction. RNG k-e model is used to consider the swirl flame in a confined wall. Reacting scalar fields are calculated by elliptic CMC formulation with chemical kinetic mechanism, GRI Mech 3.0. Validation is done against measurement data for mean flow and scalar fields in the model combustor [1]. Results show reasonable agreement with the mean mixture fraction and its variance, while temperature is overpredicted as the level of local extinction increases. The second-order CMC model is needed to consider local extinction with considerable conditional fluctuations near the nozzle.

  • PDF

나노재료 입계상의 소성변형에 대한 입계확산크립 모델 (A Boundary Diffusion Creep Model for the Plastic Deformation of Grain Boundary Phase of Nanocrystalline Materials)

  • 김형섭;오승탁;이재성
    • 소성∙가공
    • /
    • 제10권5호
    • /
    • pp.383-388
    • /
    • 2001
  • In describing the plastic deformation behaviour of ultrafine-grained materials, a phase mixture model in which a polycrystalline material is regarded as a mixture of a crystalline phase and a grain boundary phase has been successful. The deformation mechanism for the grain boundary phase, which is necessary for applying the phase mixture model to polycrystalline materials, is modelled as a diffusional flow of matter along the grain boundary. A constitutive equation for the boundary diffusion creep of the boundary phase was proposed, in which the strain rate is proportional to (stress/grain siz $e^{2}$). The upper limit of the stress of the boundary phase was set to equal to the strength to the amorphous phase. The proposed model can explain the strain rate and grain size dependence of the strength of the grain boundary phase. Successful applications of the model compared with published experimental data are described.

  • PDF

Performance improvement of countercurrent-flow membrane gas absorption in a hollow fiber gas-liquid membrane contactor

  • Ho, Chii-Dong;Sung, Yun-Jen;Chen, Wei-Ting;Tsai, Feng-Chi
    • Membrane and Water Treatment
    • /
    • 제8권1호
    • /
    • pp.35-50
    • /
    • 2017
  • The theoretical membrane gas absorption module treatments in a hollow fiber gas-liquid membrane contactor using Happel's free surface model were obtained under countercurrent-flow operations. The analytical solutions were obtained using the separated variable method with an orthogonal expansion technique extended in power series. The $CO_2$ concentration in the liquid absorbent, total absorption rate and absorption efficiency were calculated theoretically and experimentally with the liquid absorbent flow rate, gas feed flow rate and initial $CO_2$ concentration in the gas feed as parameters. The improvements in device performance under countercurrent-flow operations to increase the absorption efficiency in a carbon dioxide and nitrogen gas feed mixture using a pure water liquid absorbent were achieved and compared with those in the concurrent-flow operation. Both good qualitative and quantitative agreements were achieved between the experimental results and theoretical predictions for countercurrent flow in a hollow fiber gas-liquid membrane contactor with accuracy of $6.62{\times}10^{-2}{\leq}E{\leq}8.98{\times}10^{-2}$.

Slim hole 환형관내 고-액 2상 유동에 관한 연구 (Solid-liquid two phase helica l flow in a Rotating Annulus)

  • 한상목;우남섭;황영규;김영주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.369-372
    • /
    • 2008
  • An experimental study is carried out to study two-phase vertically upward hydraulic transport of solid particles by water in a vertical and inclined (0${\sim}$60 degree) concentric annulus with rotation of the inner cylinder. Rheology of particulate suspensions in shear-thinning fluids is of importance in many applications such as particle removal from surfaces, transport of proppants in fractured reservoir and cleaning of drilling holes, and so on. Annular fluid velocities varied from 0.2 m/s to 1.5 m/s for the actual drilling operational condition. Macroscopic behavior of solid particles, averaged flow rate, and particle rising velocity are observed. Main parameters considered in this study were radius ratio, inner-pipe rotary speed, fluid flow regime, and particle injection rate. For both water and CMC solutions, the higher the concentration of the solid particles is, the larger the pressure gradients become

  • PDF

VOCs/$N_2$ 혼합물의 PDMS막을 통한 증기투과시 농도분극 현상이 투과거동에 미치는 영향 (Influence of Concentration Polarization Phenomenon on the Vapor Permeation Behavior of VOCs/$N_2$ Mixture Through PDMS Membrane)

  • 염충균;이상학;송해영;이정민
    • 멤브레인
    • /
    • 제11권1호
    • /
    • pp.50-59
    • /
    • 2001
  • 증기투과를 이용한 휘발성유기물(volatile organic compounds, VOCs)/$N_2$ 혼합물의 분리에서 농도분극현상이 투과거동에 미치는 영향을 연구하였다. 막 재료는 VOCs와 친화력이 큰 poly(dimethylsiloxane)(PDMS) 막을 사용하였으며, VOCs는 염소화탄화수소류 중에 탄소수와 치환된 염소수를 고려하여 $CH_2Cl_2, CHCl_3, C_2H_4Cl_2, C_2H_3Cl_3$를 사용하였다. Feed의 유속, 투과온도, VOCs의 농도 등의 변화에 따른 투과거동의 변화를 관찰하였다. 유속이 감소함에 따라 막의 투과분리성능의 감소가 관찰되었으며, 응축성이 큰 VOCs일수록, VOCs의 농도가 높을수록 또는 투과 온도가 낮을수록 감소 폭이 큰 경향을 보였다. 이와 같은 투과거동의 변화는 농도분극현상에 의한 것으로, 유속이 감소함에 따라 경계층 내의 물질전달계수가 감소하여 농도분극현상이 증가하기 때문에 나타나는 투과거동의 변화로 해석하였다. 결과적으로 VOCs/기체 혼합물의 증기투과를 통한 분리 시 농도분극현상이 크지 않을 것이라는 일반적인 생각과는 달리 고무상 막을 통한 증기투과에서는 농도분극현상에 의한 막 성능의 감소가 크게 나타났다.

  • PDF

유지제 혼입율 변화에 따른 콘크리트의 유동성 및 역학적 특성 (Liquidity and Mechanical Properties of Concrete by Fluidity Retention Agent Mix Rate Change)

  • 박병관;최성용;배장춘;노동현;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.89-92
    • /
    • 2008
  • This research analyzed the basic characteristics of unhardened concrete and the compression strength characteristics of hardened concrete according to liquidity retention agent mix rate change to improve the liquidity fluidity retention performance of high performance concrete, and produced the following results. The moment fluidity retention agent is added according to fluidity retention agent mix rate change, which increased fluidity retention agent mix rate, slump flow decreased, and in the case of slump flow according to the progress time change by the fluidity retention agent mix rates, the more fluidity retention agent mix rate increased, the lower slump flow change rate became. The moment fluidity retention agent is added according to fluidity retention agent mix rate change, fluidity retention agent mix rate increased compared to non-mixture of fluidity retention agent, and the air amount by progress time change by the fluidity retention agent mix rates slightly increased, however target range is still met and unit volume mass is inversely proportional to air amount. Compression strength according to age progress by the fluidity retention agent mix rates was shown to increase slightly with increase in fluidity retention agent mix rate, and yet the difference was not significant.

  • PDF

다공스로틀밸브가 혼합기 유동과 연료 분무의 2차 미립화에 미치는 영향 (Effects of Perforated Throttle Valve on the Mixture Flow and Secondary Atomization of Fuel Spray)

  • 조병옥;조행묵;이창식
    • 한국분무공학회지
    • /
    • 제1권3호
    • /
    • pp.60-66
    • /
    • 1996
  • Finely atomized fuel droplet and good mixed mixture plays very important in improving combustion efficiency in an spark ignition engine. And combustion efficiency has influence directly on the engine power, fuel consumption rate and pollutant emission. In this study, perforated throttle valve which has relatively low value of PR has been developed and studied for the purpose of improving those aims. As a result of this study, it has been verified that the perforated throttle valve makes droplet more finely, and also proved that has a function of contributing to form good mixed mixture, especially in mixture preparation system of carburetor or SPI type spark ignition engine.

  • PDF

이산화탄소 분리를 위한 Pd-Ag 분리막 공정의 CFD 모사 (CFD Simulation of Pd-Ag Membrane Process for $CO_2$ Separation)

  • 오민;박준용;노승효;홍성욱
    • 공업화학
    • /
    • 제20권1호
    • /
    • pp.104-108
    • /
    • 2009
  • 본 연구에서는 이산화탄소/수소 혼합기체가 관 모양의 Pd-Ag 막을 통과할 때 관 안에서의 이산화탄소 및 수소의 몰분율, 수소 분압, 그리고, 속도 구배 등을 CFD (Computational Fluid Dynamics) 기법을 사용하여서 다양한 유입 속도에 대해서 모사하였다. 모사 결과에 의하면 유입 속도가 증가할수록 관의 길이 방향을 따라서 이산화탄소의 몰분율이 더디게 증가함을 알 수 있었다. 또한, 혼합 기체의 유입 속도와 관의 길이가 수소 회수율에 미치는 영향에 대해서 살펴보았으며 낮은 유입속도와 긴 관의 경우에 수소 회수율이 큰 것을 알 수 있었다.

PECVD 기법에 의해 제조된 nc-Si : H 박막의 나노 구조적 특성 (Nanostructural Features of nc-Si : H Thin Films Prepared by PECVD)

  • 심재현;정수진;조남희
    • 한국결정학회지
    • /
    • 제14권2호
    • /
    • pp.56-61
    • /
    • 2003
  • Nanocrystalline hydrogenated silicon (nc-Si : H) thin films were deposited at room temperature by plasma enhanced chemical vapor deposition (PECVD): a mixture of SiH₄ and H₂ gas was introduced into the evacuated reaction chamber. When the H₂ gas flow rate was low, the density of Si-H₃ bonds was high in the films. On the other hand, when the H₂ gas flow rate was high, e.g., 100 sccm, a large number of Si-H bonds contributed to the passivation of the surface of the large volume of Si nanocrystallites. The relative fraction of the Si-H₃ and Si-H₂ bonds in the amorphous matrix varied sensitively with the H₂ gas flow rate. The variation was associated with the change in the intensity as well as the wavelength of the main PL peaks, indicating the change in the total volume as well as the size of the Si nanocrystallites in the films.