Browse > Article

CFD Simulation of Pd-Ag Membrane Process for $CO_2$ Separation  

Oh, Min (Department of Chemical Engineering, Center for Energy Policy, Hanbat National University)
Park, Junyong (Department of Chemical Engineering, Center for Energy Policy, Hanbat National University)
Noh, Seunghyo (Department of Chemical Engineering, Center for Energy Policy, Hanbat National University)
Hong, Seong Uk (Department of Chemical Engineering, Center for Energy Policy, Hanbat National University)
Publication Information
Applied Chemistry for Engineering / v.20, no.1, 2009 , pp. 104-108 More about this Journal
Abstract
In this study, for the flow of carbon dioxide/hydrogen mixture through a tubular type Pd-Ag membrane, hydrogen partial pressure, velocity profile, and concentration profile were simulated as a function of inlet flow rate using computational fluid dynamics (CFD) technique. The simulation results indicated that the mole fraction of carbon dioxide increased slowly in the longitudinal direction as the flow rate increased. In addition, the effects of inlet flow rate and the length of membrane on hydrogen recovery were investigated. At lower flow rate and for longer membrane, the hydrogen recovery was larger.
Keywords
carbon dioxide separation; hydrogen; Pd-Ag membrane;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. Uemiya, T. Matsuda, and E. Kikuchi, J. Membr. Sci., 56, 315 (1991)   DOI   ScienceOn
2 A. Caravella, G. Barbieri, and E. Drioli, Chem. Eng. Sci., 63, 2149 (2008)   DOI   ScienceOn
3 G. Barbieri, F. Scura, F. Lentini, G. De Luca, and E. Drioli, Sep. Puri. Tech., 61, 217 (2008)   DOI   ScienceOn
4 S. H. Jung, K. Kusakabe, S. Morooka, and S. D. Kim, J. Membr. Sci., 170, 53 (2001)   DOI   ScienceOn
5 C. V. Ovensen, P. Stolze, J. K. Norskov, and C. T. Campbell, J. Catal., 134, 445(1992)   DOI   ScienceOn
6 G. Barbieri, A. Brunetti, G. Tricoli, and E. Drioli, J. Power Source, 182, 160 (2008)   DOI   ScienceOn
7 J. Shu, B. P. A. Grandjean, A. van Neste, and S. Kaliaguine, Can. J. Chem. Eng., 69, 1036 (1991)   DOI
8 J. Chabot, J. Lecomte, C. Grumet, and J. Sannier, Fusion Technol., 14, 614 (1988)   DOI
9 R. M. Barrer, Diffusion in and Through Solids, Cambridge University Press, London (1951)
10 gPROMS User’ Guide, Process Systems Enterprise Ltd. (2006)
11 Fluent, Fluent 6.2 User's Guide, Fluent Incorporated (2006)
12 A. Li, W. Ling, and R. J. Hughes, J. Membr. Sci., 165, 135 (2000)   DOI   ScienceOn
13 J. Rifkin, The Hydrogen Economy, Wiley & Sons, New York (2002)
14 H. Yoshida, S. Konishi, and Y. Naruse, J. Less-Comm. Met., 89, 429 (1983)   DOI   ScienceOn
15 T. L. Ward and T. Dao, J. Membr. Sci., 153, 211 (1999)   DOI   ScienceOn
16 R. B. McBridge and D. L. McKinkey, Chem. Eng. Prog., 61, 81 (1985)
17 H. Fogler, Elememts of Chemical Reaction Engineering, 3rd ed., Prentice-Hall, (1999)
18 M. Amano, C. Nishimura, and M. Komaki, Mater. Trans. JIM., 31, 404 (1990)   DOI
19 H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Prentice-Hall (1995)
20 R. W. Spillman, Chem. Eng. Prog., 85, 41 (1989)
21 F. C. Gielens, R. J. J. Knibbeler, P. F. J. Duysinx, H. D. Tong, M. A. G. Vorstman, and J. T. F. Keurentjes, J. Membr. Sci., 279, 176 (2006)   DOI   ScienceOn