• Title/Summary/Keyword: mixing-ratio control system

Search Result 69, Processing Time 0.028 seconds

Implementation of a Mixing-Ratio Control System for Two-Component Liquid Silicone Mixture (이액형 액상실리콘 재료의 혼합비율 제어 시스템 개발)

  • Choo, Seong-Min;Kim, Young-Min;Lee, Keum-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.688-694
    • /
    • 2018
  • The mixture ratio of two-component liquid silicone is important for the inherent physical characteristics of the finished product. Therefore, it is necessary to uniformly control the ratio of the main material and the sub-material. In this paper, a mixing-ratio control system was designed, which consists of a digital flow meter and a flow control system to measure the flow rate of the raw materials and a pumping system to maintain constant pressure and transfer of the raw materials. In addition, a program was developed to control the organic interlocking and mixing ratio. For the verification of the developed system, we compared the actual weight of raw material with the value measured by the flow meter during pumping, and we measured the physical properties of the mixed material by making test samples with and without the application of the mixing-ratio improvement algorithm. The measured value was close to the reference value with a hardness range of 46-47 and tensile strength of 9.3-9.5 MPa. These results show that the mixing ratio of the liquid silicone is controlled within an error range of ${\pm}0.5%$.

A Study for the Automatic Control System in Greenhouse Using Microcomputer(IV) -Application of a Controller for the Automatic Control System- (마이크로컴퓨터에 의한 시설재배의 자동화에 관한 연구(IV) -자동화 시스템용 종합제어기의 응용-)

  • 김진현;김철수
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.288-298
    • /
    • 1995
  • In greenhouse vegetable, the automatic control in cultivating environment has been projected as a national business ; especially a countermeasure against the settlement of UR negotiation. Because it makes possible to manage a large greenhouse with family-hands and to expect the betterment of quality and the increasement of harvest in crops. In the course of carrying the workout, however, there are many problems with the overall control system with computers as well as the individual systems for environment control because of hardware and software problems : especially the shortage of data for development of the system is most serious. Among the many problems for development of the automatic control system, the automations of irrigation, liquefied fertilizer and chemical solution, mixing and ventilation, etc and the development of the general automatic controller system for environment control in greenhouse are studied, which requires a lot of tabors. The results are summarized as follows ; 1. In moisture control by the soil moisture meter, the error was shown 10 % in the beginning irrigation point and 19 % in the stop irrigation point. 2. The supply of liquefied fertilizers with the irrigation system was excellent by setting the operating time and the mixing ratio. 3. The developed chemical spraying system was operated well, but not perfect in nozzle positions. 4. The cucumber was cultivated properly with the trickle irrigation system. 5. The developed controller for the automatic control system in greenhouse was remarkable in the part of hardware, but more researches are needed in the part of software.

  • PDF

A Study on the Mix Design and the Control System of Thermal Crack for High Quality Mass Concrete (고품질 매스콘크리트 시공을 위한 배합설계 및 온도균열제어 시스템에 관한 연구)

  • Kim, Sun-Gu;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.2
    • /
    • pp.174-178
    • /
    • 2001
  • This study was performed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a result, the optimal mixing conditions were : W/B 41%, unit binder 375kgf/$\textrm{m}^3$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$\textrm{cm}^2$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF

Evaluation of Ventilation Rate and External Air Mixing Ratio in Semi-closed Loop Ventilation System of Pig House Considering Pressure Loss (압력손실을 고려한 양돈시설의 반폐회로 환기시스템의 환기량 및 혼합비율 평가)

  • Park You-me;Kim Rack-woo;Kim Jun-gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.61-72
    • /
    • 2023
  • The increase in the rearing intensity of pigs has caused deterioration in the pig house's internal environment such as temperature, humidity, ammonia gas, and so on. Traditionally, the widely used method to control the internal environment was through the manipulation of the ventilation system. However, the conventional ventilation system had a limitation to control the internal environment, prevent livestock disease, save energy, and reduce odor emission. To overcome this problem, the air-recirculated ventilation system was suggested. This system has a semi-closed loop ventilation type. For designing this system, it was essential to evaluate the ventilation rates considering the pressure loss of ducts. Therefore, in this study, pressure loss calculation and experiment were conducted for the quantitative ventilation design of a semi-closed loop system. The results of the experiment showed that the inlet through which external air flows should always be opened. In addition, it was also found that for the optimum design of the semi-closed loop ventilation system, it was appropriate to install a damper or a backflow prevention device rather than a ventilation fan.

The Study of Emission Characteristics of Biodiesel Fuel in Diesel Engines

  • Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.56-63
    • /
    • 2015
  • In this study, the exhaust characteristics of the diesel engine for the change of the mixing ratio of biodiesel fuel were quantitatively analyzed by using the numerical analysis method. As the fuel used in the experiment, the diesel and biodiesel(waste oil, soybean oil), the mixed fuel BD2(Diesel only), BD3, BD5, BD20, BD50 and BD100 were used. The injection pressure($p_{inj}$) was set to 400bar, 600bar, 800bar, 1000bar and 1200bar as the experimental variable. Also the concept of the standard deviation, Pearson's correlation coefficient and Spearman rank-order correlation coefficient based on the statistics was introduced in order to analyze the exhaust characteristics of the quantitative NOx and Soot according to the injection pressure and the mixing ratio variation of biodiesel blending fuel. It is considered that as a result of studies, for the waste oil, NOx and Soot can be simultaneously reduced through control of the mixing ratio at the regions of $p_{inj}=400bar$ and $p_{inj}=600bar$, and the Soot can be reduced without affecting on the emission of NOx at more than $p_{inj}=800bar$. For the soybean oil, NOx and Soot can be simultaneously reduced at $p_{inj}=400bar$ and the Soot can be reduced without affecting on the emission of NOx at $p_{inj}=600bar$.

Application to Breakwater Foundation by DCM (DCM 공법에 의한 방파제 기초 적용사례)

  • Gu, Im-Sik;Kim, Young-Sang;Jeong, Gyeong-Hwan;Choi, Jeong-Uk;Shin, Min-Sik;Kim, Jae-Hyon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.372-382
    • /
    • 2006
  • The DCM(Deep Cement Mixing) Method was introduced domestically in 1985 and has been applied widely to improve stability, increase bearing capacity and reduce settlement of the structure. It has been only performed by the combined equipment to improve the soft ground in coastal areas. But it has qualify-control problems such as interference of waves and improving depth, etc. Therefore DCM Barge of specialist equipment, named by Dong Ji Ho, was equipped with three mixing shafts with four rod and installed GPS system In itself, had been developed in 2005 for the purpose of solving the above problems. This paper represents about Dong Ji Ho's qualify-control system as well as it's first domestic application to in-situ trial test and the original design of the Ulsan breakwater site.

  • PDF

A Study on the Mix Design and the Control of Thermal Crack of Mass Concrete (매스콘크리트의 배합설계 및 온도균열제어에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.533-538
    • /
    • 2001
  • This study was peformed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a results, the optimal mixing conditions were : W/B 41%, unit binder 375kg/$cm^{2}$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$cm^{2}$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF

Etching Mechanism of Indium Tin Oxide Thin Films using Cl2/HBr Inductively Coupled Plasma

  • Kim, Sung-Ihl;Kwon, Kwang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • Dry etching characteristics of indium tin oxide films and etch selectivities over photoresist films were investigated using $Cl_2/HBr$ inductively coupled plasma. From a Langmuir probe diagnostic system, it was observed that while the plasma temperature was kept nearly constant in spite of the change of the HBr mixing ratio, the positive ion density decreases rapidly with increasing the mixing ratio. On the other hand, a quadrupole mass spectrometer showed that the neutral HBr and Br species increased. The etching mechanism in the $HBr/Cl_2$ plasma was analyzed.

Flow Characteristics of Central-Driven Ejector with Design Parameters (중앙구동 이젝터의 설계변수에 따른 유동특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.645-651
    • /
    • 2015
  • The objective of this study is to experimentally investigate the effect of design parameter on the mass ratio of a central-driven ejector. The design parameters are the primary nozzle area and distance ratios, diffuser exit-area ratio and mixing-tube length ratio. The experimental setup was an open-loop continuous circulation system which has a movable nozzle ejector, an electric motor-pump, a water tank, a control panel and high-speed camera unit. We calculated the mass ratio using the measured primary and suction-flow rates with the experimental parameter of primary water-flow rate or pressure. The results showed that the mass ratio increased with the primary nozzle distance ratio and mixing tube length ratio, while the mass ratio decreased with the primary nozzle-area ratio and diffuser exit-area ratio.

Fundamental Study of Manufacture Possibility and Composition Ratio of Sludge-Particle Board (슬러지-파티클 보드의 제조(製造) 가능성(可能性) 및 구성비율(構成比率)에 관한 기초연구(基礎硏究))

  • Lee, Phil-Woo;Yoon, Hyoung-Un;Kim, Dae-Jun;Son, Jung-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 1993
  • The aim of this research was to manufacture sludge-particle board using paper sludge with wood particle and to investigate physical and mechanical properties of various sludge-particle boards, fabricated with ratios of sludge to particle of 10 to 90, 20 to 80, 30 to 70, 40 to 60 and 50 to 50(oven dry weight based). Sludge-particle boards were manufactured by urea-formaldehyde resin, 0.8 target specific gravity, and 10mm thickness. It was possible to manufacture sludge-particle board as the same processing in the present particleboard manufacturing system. This sludge-particle board have different properties as composition ratios of sludge and particle. And sludge-particle board made from 10 percent to 20 percent of sludge mixing ratio have similar mechanical properties compared with control particleboard. Especially, the sludge-particle board made from 10 percent to 40 percent mixing ratios of sludge have superior to control particleboard in internal bond, screw withdrawal holding strength and modulus of elasticity. In the case of dimensional stability, water absorption was increased and thickness swelling was decreased as increased with sludge mixing proportion. The sludge-particle board made of different mixing ratios of our laboratory design was able to concluded that there is possibility of partial substitution of wood particle materials.

  • PDF