• Title/Summary/Keyword: mixing effects

Search Result 1,436, Processing Time 0.026 seconds

Probiotic Properties of Lactic Acid Bacteria isolated from Feces and Kimchi (베트남인 분변 및 김치로부터 분리된 유산균의 프로바이오틱스 기능성 연구)

  • Shin, Hyun Su;Yoo, Sung Ho;Jang, Jin Ah;Won, Ji Young;Kim, Cheol Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.255-261
    • /
    • 2017
  • The purpose of this study was to investigate the probiotic properties and antioxidant capacity of lactic acid bacteria isolated from Vietnamese feces and the Korean traditional food kimchi. Six isolated strains were identified as Lactobacillus sp. by 16S rRNA sequencing. All strains showed good resistance to low pH (1.5, 2.0, and 3.0) and 0.3% oxgall bile acids. Culture filtrates from the six strains showed various antioxidant effects, including DPPH, ABTS, reducing power, and metal chelating ($Fe^{2+}$) activities. Two of the six Lactobacillus strains showed potential probiotic activity. Heat resistance and adhesion assays were conducted by mixing the selected strains, Lactobacillus acidophilus V4, Lactobacillus plantarum V7, and Lactobacillus paracasei DK121 isolated from kimchi. The results showed that the heat resistance of these strains was similar to that of a commercial strain, L. plantarum LP. In addition, a mucin attachment assay using the mixture of selected strains (V4, V7, and DK121) showed high binding activity to the mucous layer. In conclusion, a mixture of V4, V7, and DK121 shows promising probiotic activity and may be useful for the development of health-related products.

Effects of Fly Ash and Gypsum Mixture on Reducing Phosphorus Loss from Paddy Soil (논 토양에서 석탄회와 석고의 혼합제를 활용한 인산유출 저감)

  • Lee, Yong-Bok;Lee, Seul-Bi;Oh, Ju-Hwan;Lee, Chang-Hoon;Hong, Chang-Oh;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.66-71
    • /
    • 2008
  • Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Fly ash and phospho-gypsum which are industrial by-product were investigated as a means of reducing dissolved phosphorus in arable soil. To determine the optimum mixing ratio of fly ash(FA) and phospho-gypsum(PG) for reducing dissolved reactive P(DRP) in soil, various mixture ratio of FA and PG were mixed with two soil. The DRP content and pH in soils were analysed after 3 weeks incubation under flooding condition. Although DRP content in soils was significantly decreased by FA-PG mixture compared with control, there were no significant difference among the FA and PG mixture ratio of 75:25, 50:50, and 25:75. The mixture of 75% FA and 25% PG was selected for field test. A field experiment was carried out to evaluate the reducing DRP content in paddy soil to which 0(NPK), 20(FG 20), 40(FG 40), and 60(FG 60) Mg $ha^{-1}$ of the mixture were applied. The DRP content was reduced by 31% at the application rate of 60 Mg $ha^{-1}$. In contrast to deceasing DRP, Ca-P content increased significantly with the mixture application rate. After rice harvesting, available $SiO_2$, P, and exchangeable Ca content in soil increased significantly with application rate due to high content of Si, P, and Ca in the mixture. Mixtures of fly ash and gypsum should reduce P loss from paddy soil and increase soil fertility.

The Effect of Delayed Compaction on Unconfined Compressive Strength of Soil-Cement Mixtures (지연다짐이 Soil-Cement의 압축강도에 미치는 영향)

  • 정일웅;김문기;도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.4
    • /
    • pp.66-76
    • /
    • 1986
  • This study was attempted to investigate the effects of delayed compaction on the unconfined compressive strengh and dry density of Soil-cement mixtures. Soil-cement construction is a time-consuming procedure. Time-delay is known as a detrimental factor to lower the quality of soil-cement layer. A laboratory test was performed using coarse and fine weathered granite soils. The soils were mixed with 7% cement at optimum moisture content and excess moisture content in part. Socondary additives such as lime, gypsum-plaster, flyash and sugar were tried to counteract the detri-mental effect of delayed compaction. The specimens were compacted by Harvard Miniature Compaction Apparatus at 0,1,2,4,6 hors after mixing. Two kinds of compactive efforts(9 kgf and 18 kgf tamper) were applied. The results were summarized as follows: 1.With the increase of time delay, the decrease rate of dry density of the specimen compacted by 9 kgf tamper was steeper than that of the specimen compacted by 18kgf tamper. In the same manner, soil-B had steeper decreasing rate of dry density than soil-A. 2.Based on the results of delayed compaction tests, the dry density and unconfined compressive sterngth were rapidly decreased in the early 2 hours delay, while those were slowly decreased during the time delay of 2 to 6 hours. 3.The dry density and unconfined compressive strength were increased by addition of 3% excess water to the optimum moisture content during the time delay of 2 to 6 hours. 4.Without time delay in compaction, the dry densities of soil-A were increased by adding secondary additives such as lime, gypsum-plaster, flyash and sugar, on the other hand, those of soil-B were decreased except for the case of sugar. 5.The use of secondary additives like lime, gypsum-plaster, flyash and sugar could reduce the decrease of unconfined compressive strength due to delayed compaction. Among them, lime was the most effective. 6.From the above mentioned results, several recommendations could be suggested in order to compensate for losses of unconfined compressive strenght and densit v due to delayed compaction. They are a) to use coarse-grained granite soil rather than fined-grained one, b) to add about 3% excess compaction moisture content, c) to increase compactive effort to a certain degree, and d) to use secondary additives like line gypsum-plaster, flyash, and sugar in proper quantity depending on the soil types.

  • PDF

An Evaluation on Quality of Field Trial Protocol using Pay Factor and Analysis of Fatigue Life (지불계수를 이용한 시험포장구간의 품질평가와 피로수명 분석)

  • Lee, Jae-Hack;Rhee, Suk-Keun;Kim, Seong-Min;Hwang, Sang-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.133-142
    • /
    • 2009
  • This research is performed to estimate quality of trial pavement for construction and analyze effect of fatigue life by using the pay factor. Specially, asphalt content which is difficult to control the pavement quality, is selected by pay adjustment standard factors and pay factor is calculated by asphalt content. This research is also analyzed to present relation of fatigue life according to asphalt content, to evaluate quality of the road pavement by calculating pay factor of sampling trial field mixture 2 times. This research confirms that it is different quality of road pavement according to pay factor changes. To analyze the fatigue life of pavement by using asphalt mixture for trial field. As a result, it is conformed that high pay factor could be high fatigue life of trial field. This means that pay factor using probability theory reflects road pavement fatigue life. Also, this study is included that beam fatigue test manufacturing specimen such as mixing type of plant which purvey asphalt mixture to trial field, compared with fatigue life of trial field. As a result, the fatigue life of specimen that is manufactured by mix type is higher than trial field specimen. This means that performance of road pavement can be reduced by gradation or other effects. Therefore, to exactly evaluate the quality of road pavement, pay factor should be calculated appling various pay adjustment standard factors such as gradation, air-void in U.S. states which is adopted pay adjustment.

  • PDF

Mechanical Properties and Bio-Compatibility of Ti-Nb-Zr-HA Biomaterial Fabricated by Rapid Sintering Using HEMM Powders (고에너지 밀링분말과 급속소결을 이용한 Ti-Nb-Zr-HA 생체복합재의 기계적 성질 및 생체적합성)

  • Park, Sang-Hoon;Woo, Kee-Do;Kim, Sang-Hyuk;Lee, Seung-Min;Kim, Ji-Young;Ko, Hye-Rim;Kim, Sang-Mi
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.384-390
    • /
    • 2011
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy has been widely used as an alternative to bone due to its excellent biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity. Therefore, nontoxic biomaterials with a low elastic modulus should be developed. However, the fabrication of a uniform coating is challenging. Moreover, the coating layer on Ti and Ti alloy substrates can be peeled off after implantation. To overcome these problems, it is necessary to produce bulk Ti and Ti alloy with hydroxyapatite (HA) composites. In this study, Ti, Nb, and Zr powders, which are biocompatible elements, were milled in a mixing machine (24h) and by planetary mechanical ball milling (1h, 4h, and 6h), respectively. Ti-35%Nb-7%Zr and Ti-35%Nb-7%Zr-10%HA composites were fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70MPa using mixed and milled powders. The effects of HA addition and milling time on the biocompatibility and physical and mechanical properties of the Ti-35%Nb-7%Zr-(10%HA) alloys have been investigated. $Ti_2O$, CaO, $CaTiO_3$, and $Ti_xP_y$ phases were formed by chemical reaction during sintering. Vickers hardness of the sintered composites increases with increased milling time and by the addition of HA. The biocompatibilty of the HA added Ti-Nb-Zr alloys was improved, but the sintering ability was decreased.

Evaluation of Effective Dose and Exposure Level of Radon in Process Handling NORM (인산석고 취급공정에서의 라돈농도 및 유효선량 수준 평가)

  • Chung, Eun Kyo;Jang, Jae Kil;Kim, Jong Kyu;Kim, Joon Beom;Kwon, Jiwoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.283-291
    • /
    • 2018
  • Objectives: To monitor the radon concentration level in plants that handle phosphorus rock and produce gypsum board and cement, and evaluate the effective dose considering the effect of radon exposure on the human body. Methods: Airborne radon concentrations were measured using alpha-track radon detectors (${\alpha}$-track, Rn-tech Co., Korea) and continuous monitors (Radon Sentinel 1030, Sun Nuclear Co., USA). Radon concentrations in the air were converted to radon doses using the following equation to evaluate the human effects due to radon. H (mSv/yr) = Radon gas concentration x Equilibrium factor x Occupancy factor x Dose conversion factor. The International Commission on Radiological Protection (ICRP) used $8nSv/(Bq{\cdot}hr/m^3)$ as the dose conversion factor in 2010, but raised it by a factor of four to $33nSv/(Bq{\cdot}hr/m^3)$ in 2017. Results: Radon concentrations and effective doses in fertilizer manufacturing process averaged $14.3(2.7)Bq/m^3$ ($2.0-551.3Bq/m^3$), 0.11-0.54 m㏜/yr depending on the advisory authority and recommendation year, respectively. Radon concentrations in the gypsum-board manufacturing process averaged $14.9Bq/m^3$ at material storage, $11.4Bq/m^3$ at burnability, $8.1Bq/m^3$ at mixing, $10.0Bq/m^3$ at forming, $8.9Bq/m^3$ at drying, $14.7Bq/m^3$ at cutting, and $10.5Bq/m^3$ at shipment. It was low because it did not use phosphate gypsum. Radon concentrations and effective doses in the cement manufacturing process were $23.2Bq/m^3$ in the stowage area, $20.2Bq/m^3$ in the hopper, $16.8Bq/m^3$ in the feeder and $11.9Bq/m^3$ in the cement mill, marking 0.12-0.63 m㏜/yr, respectively. Conclusions: Workers handling phosphorous gypsum directly or indirectly can be assessed as exposed to an annual average radon dose of 0.16 to 2.04 mSv or 0.010 to 0.102 WLM (Working Level Month).

The Effect of Wind (Typhoon), Tide and Solar Radiation for the Water Stratification at Deukryang Bay in Summer , 1992 (하계 득량만의 연직혼합과 관련된 바람 (태풍), 조석, 태양에너지의 영향)

  • Lee, Byung-Gul;Cho, Kyu-Dae;Hong, Chol-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.256-263
    • /
    • 1995
  • This paper presents the evidence on the considerably strong stratification - destratification(SD) phenomena during spring - neap tidal cycle in summer of 1992 based on the observed temperature, salinity and density data. To find out the main factors causing SD in the bay, we computed the rate of potential energy balance of the surface heat flux, tidal and wind stirring proposed by Simpson and Hunter (1974) and Simpson and Bowders (1981) using observed data. It was found that the energy of the wind stirring was one - order smaller than those of the heat flux and the tidal stirring. It means that the variation of stratification phenomena in the bay mainly depend on tidal stirring and sea surface heating in summer if there was no exceptionally strong wind event like a typhoon. Finally, we tested the effects of typhoon on the mixing characteristics of the bay using the example of a empirical typhoon model. It was found that when wind speed is larger than 15m/sec in Deukryang Bay, the wind energy was always larger than the average heating energy based on empirical typhoon model test. Particularly, typhoon passed on the left side of the bay, strong wind energy happened, which is almost the same as tidal energy of spring tide.

  • PDF

Selected Physicochemical and Consumer Preference Characteristics of Baikseolgi with Pomegranate Concentrate (석류 농축액을 첨가한 백설기의 품질 특성)

  • Choi, Ji Eun;Lee, Jun Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.1
    • /
    • pp.160-164
    • /
    • 2015
  • The effects of different ingredient formulations on physicochemical qualities and consumer preferences were investigated using Baikseolgi incorporated with pomegranate concentrate (PC), a healthy food ingredient, as a model system. PC was incorporated into the formulation at five different amounts [0%, 1.6%, 3.3%, 5%, and 6.6% (w/w)] by replacing the equivalent amount of water added. After appropriate mixing, rice cakes were steamed and quality attributes were evaluated after cooling. The pH decreased while moisture content increased significantly with increased PC substitution (P<0.05). Lightness decreased significantly from 82.33 to 65.09 with higher incorporation of PC (P<0.05), indicating that the color of Baikseolgi became darker. Redness and yellowness, on the other hand, increased significantly (P<0.05). Hardness gradually increased as the PC content increased in the formulation (P<0.05). In addition, DPPH and ABTS radical scavenging activities increased significantly (P<0.05), and they were well correlated. The overall consumer acceptance results indicate that incorporation of 1.6% PC in the formulation of Baikseolgi is recommended to take advantage of the health benefits of PC without sacrificing quality acceptance by consumers.

Emulsification of O/W Emulsion Using Non-ionic Mixed Surfactant: Optimization Using CCD-RSM (비이온성 혼합계면활성제를 이용한 O/W 유화액의 제조 : CCD-RSM을 이용한 최적화)

  • Lee, Seung Bum;Li, Guangzong;Zuo, Chengliang;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.606-614
    • /
    • 2019
  • A mixing ratio of the oil in water (O/W) emulsion of palm oil and the non-ionic surfactant (Tween-Span type) possessing different hydrophile-lipophilie balance (HLB) values was evaluated in this work. An optimum condition was determined through analysis of main and interaction effects of each quantitative factor using central composite design model-response surface methodology (CCD-RSM). Quantitative factors used by CCD-RSM were an emulsification time, emulsification speed, HLB value and amount of surfactant. On the other hand, the reaction parameters were the viscosity and mean droplet size of O/W emersion. Optimized conditions obtained from CCD-RSM were the emulsification time of 12.7 min, emulsification speed of 5,551 rpm, HLB value of 8.0 and amount of surfactant of 5.7 wt.%. Ideal experimental results under the optimized experimental condition were the viscosity of 1,551 cP and mean droplet size of 432 nm which satisfy the targeted values. The average error value from our actual experiment for verifying the conclusions was below to 2.5%. Therefore, a high favorable level could be obtained when the CCD-RSM was applied to the optimized palm oil to water emulsification.

Preparation of Sulfobetaine Chitosan, Silk Blended Films, and Their Properties (설포베타인 키토산의 실크 블렌드 필름의 제조 및 그들의 성질)

  • Koo, Ja-Sung;Cha, Jae-Ryung;Oh, Se-Heang;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.54-61
    • /
    • 2014
  • Water-soluble sulfobetaine chitosan (SCs) was prepared for a blending film with Bombyx mori silk fibroin (SF) by reacting chitosan with 1,3-propanesultone. A series of SF/SCs blended films were successfully prepared by mixing aqueous solutions of B. mori SF and SCs. The SF/SCs blended films were examined through spectroscopic and thermal analysis to determine the morphological changes of SF in the SCs. The effects of the SF/SCs blend ratios on physical and mechanical properties were investigated to discover the feasibility of using these films as biomedical materials such as artificial skin and wound dressing. X-ray analysis showed good compatibility between the two biopolymers. The in vitro degradation behavior of the SF/SCs blended films was systematically investigated for up to 8 weeks in phosphate buffered saline solution at $37^{\circ}C$ and showed a mass loss of 46.4% after 8 weeks. All films showed no cytotoxicity by MC3T3-E1 assay. After 3 days of culture, the relative cell number on all the SF/SCs films was slightly lower than that of an optimized tissue culture plastic.