• Title/Summary/Keyword: mixing coefficient

Search Result 433, Processing Time 0.034 seconds

A Study on Strength and Permeability of Cooper Slag mixed Porous Concrete (동제련 슬래그를 혼입한 포러스 콘크리트의 강도 및 투수성능에 관한 연구)

  • Shim, Byung-Ju;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.69-72
    • /
    • 2011
  • The purpose of this study is to identify basic property of porous concrete using cooper slag as fine aggregate. The specimens were made with cooper slag with various mixing ratio(10, 20, 30, 50%), porous concrete and porous concrete containing river fine aggregate and crushed fine aggregate, which W/B ratio fixed 0.25. Compressive strength, Flexural strength, coefficient of permeability. From the test results, various fine aggregate mixing ratio improves compressive strength and flexural strength, but cooper slag fine aggregate mixing ratio over 20%, concrete indicates trend to decrease performance of permeability. Concrete containing fine aggregate is improved the performance of permeability and strength compared to other specimen, when age 28days, and cooper slag mixing ratio less than 20% concrete indicates better performance than cooper slag mixing ratio 20% over.

  • PDF

Sound Absorption of Natural Fiber Composite from Sugarcane Bagasse and Coffee Silver Skin

  • Wachara KALASEE;Putipong LAKACHAIWORAKUN;Visit EAKVANICH;Panya DANGWILAILUX
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.470-480
    • /
    • 2023
  • This study aimed to develop a sound-absorbing composite using sugarcane bagasse (SB) and coffee silver skin (CS) as raw materials. The composite boards were manufactured by bonding the fibers with Melamine Urea-Formaldehyde adhesive, ensuring a consistent thickness of 30 mm. Various densities were employed, namely 380, 450, and 520 kg/m3. The samples were fabricated with different fiber ratios, including SB100%, SB75% with CS25%, and SB50% with CS50%. The sound absorption coefficient (SAC) and noise reduction coefficient (NRC) were measured using the impedance tube method within a frequency range of 63-6,300 Hz. The experimental results revealed that the mixing ratio of CS exerted a notable influence on enhancing the SAC, while the density of the composite board exhibited a significant impact on increasing both the SAC and NRC. Among the densities tested, the optimal value was observed at 520 kg/m3, yielding a SAC value of 0.65 at a frequency of 1,000 Hz and an NRC value of 0.55 for the SB50-CS50 composite plate. These findings underscore the importance of considering the CS mixing ratio and composite board density when aiming to optimize sound absorption properties.

Evaluation on Long-term Mechanical Performance and Durability of Recycled Coarse Aggregate Concrete Produced by Two-stage Mixing Approach (2단계 배합방법으로 제조된 순환굵은골재 콘크리트의 장기재령 역학적 성능 및 내구성 평가)

  • Seong-Uk, Heo;Jeong Jin, Son;Chul-Woo, Chung;Young Chan, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.475-481
    • /
    • 2022
  • Recycled aggregates show high water absorption rate compared to natural aggregates due to microcrack developed during production process and adhered cement pastes at the surface of recycled aggregates. This leads to the deterioration of mechanical properties and slow work flow. Currently it is getting hard to satisfy high demand for natural aggregates. Utilizing recycled aggregate more widely may be a substitutable countermeasure for the shortage of natural resources. In this study, two-stage mixing approach(TSMA) suggested by Tam et al. is used to produce recycled aggregate concrete(RAC) with 100 % replacement of coarse natural aggregate and tests for compressive strength, elastic modulus, and chloride ion diffusion coefficient are conducted to find out the effect of TSMA compared to normal mixing method. According to experimental result compressive strength and elastic modulus of RAC with TSMA was superior to those of RAC with normal mixing irrespective of water-cement ratio, and in some cases mechanical properties of RAC with TSMA approached to those of natural aggregate concrete(NAC). However, chloride ion diffusion coefficient of RAC was higher than that of NAC. This illustrates that TSMA is not an appropriate method in reducing chloride ion diffusion coefficient, resulting in inconsequential contribution of TSMA to the durability of RAC.

An Analysis of Performance of Floating-Ring Journal Bearing Including Thermal Effects (유막의 온도변화를 고려한 플로팅 링 저어널베어링의 성능해석)

  • 김종수;최상규;유광택
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.130-137
    • /
    • 2001
  • In this paper, the thermal effects on the performance of floating ring journal bearing are investigated theoretically. The numerical analyses include pressure drop at inner film due to a centrifugal force, fluid momentum effects of supply oil into inner film and thermal effects in lubricating films. All performance data are presented as the rotating speed of journal from 10,000 rpm to 70,000 rpm.

Experimental Study on the Thermal Mixing and the Critical Heat Flux in the 5${\times}$5 Rod Bundle with the Hybrid Mixing Vane (복합혼합날개를 장착한 5${\times}$5 봉다발에서 부수로 혼합 및 임계열유속 실험 연구)

  • Kang, K.H.;Shin, C.H.;Choo, Y.J.;Youn, Y.J.;Park, J.K.;Moon, S.K.;Chun, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2303-2308
    • /
    • 2007
  • Experiments were performed to determine the thermal (or turbulent) diffusion coefficient (TDC) and to investigate the critical heat flux (CHF) performance in the 5${\times}$5 rod bundle with 5 unheated rods which are supported by Hybrid Mixing Vane. In this study, HFC-134a fluid was used as working fluid and the fluid temperature were measured in the important subchannels. To determine the TDC value, the measured fluid temperatures were compared with the predicted values obtained from the MATRA code. The best optimized value of ${\beta}$ was found to be 0.02 by considering prediction statistics, i.e., average and standard deviations of the differences between the experimental results and code calculations. Using the best optimized value of ${\beta}$ as 0.02, the MATRA code predicts the test results of the fluid temperature within ${\pm}$1.0 % of error. According to the experimental results on CHF of 5 non-heating guide tubes, the case with non-heating guide tube showed a little good performance in terms of CHF.

  • PDF

A Study on the Friction and Anti-abrasion Properties of Rubber Blends for Shoes Outsole (신발 밑창용 고무 블렌드물의 마찰 및 내마모 특성에 대한 연구)

  • Pyo, Kyung-Duk;Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.324-328
    • /
    • 2011
  • Blends were prepared by mixing BR, SBR and NBR to CIIR, which is used for outsole, at various mixing ratio, and effect of the mixing ratio on abrasion resistance and coefficient of friction was analyzed. CIIR interferes the crystalline formation of BR in BR/CIIR blends and this could be one of the factors that rapidly decreases abrasion resistance of BR/CIIR blends. $Tan{\delta}$ peak area of CIIR/BR blends decreased as the amount of BR present in the blends increased, and similarly, the coefficient of friction tended to decrease. Stress relaxation rate and rebound resilience of CIIR/BR blends decreased with increasing BR content, and it was presumed that their rebound resilience was affected by stress relaxation rate.

A Study on the Application of Permeable Preactive Barriers in Landfill (매립지에서 반응성 투수벽체의 적용성에 관한 연구)

  • Chun, Byung-Sik;Park, Jae-Woo;Do, Jong-Nam;Park, Joong-Sub;Park, Chan-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1126-1131
    • /
    • 2006
  • This study is part of the project that develops the permeable preactive barrier to be applied in a landfill. The geotechnical applicability of the permeable preactive barrier that filters the leachate from the landfill was evaluated. Dry specimens were made using a mixture of sand, loess and bentonite. A series of experiments are performed to determine the unconfined compressive strength and permeability of various mixing ratio of bentonite, loess, and sand. The laboratory test indicate that the optimum-mixing ratio that satisfied the regulation of unconfined compressive strength(490kPa) and coefficient of permeability$(10^{-3}\sim10^{-4}cm/s)$ of the landfill was when the ratio of sand and loess was 8:2 with bentonite content of 2%. The permeable preactive barrier is different from an impermeable barrier in that it permits a limited diffusion of the leachate, which will be directly purified biologically and chemically in the landfill.

  • PDF

Experimental Methodology Development for SFR Subchannel Analysis Code Validation with 37-Rods Bundle (소듐냉각고속로 부수로 해석코드 검증을 위한 37봉다발 실험방법 개념 개발)

  • Euh, Dong-Jin;Chang, Seok-Kyu;Bae, Hwang;Kim, Seok;Kim, Hyung-Mo;Choi, Hae-Seob;Choi, Sun-Rock;Lee, Hyung-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.89-94
    • /
    • 2014
  • The 4th generation SFR is being designed with a milestone of construction by 2028. It is important to understand the subchannel flow characteristics in fuel assembly through the experimental investigations and to estimate the calculation uncertainties for insuring the confidence of the design code calculation results. The friction coefficient and the mixing coefficient are selected as primary parameters. The two parameters are related to the flow distribution and diffusion. To identify the flow distribution, an iso-kinetic method was developed based on the previous study. For the mixing parameters, a wire mesh system and a laser induced fluorescence methods were developed in parallel. The measuring systems were adopted on 37 rod bundle test geometry, which was developed based on the Euler number scaling. A scaling method for a design of experimental facility and the experimental identification techniques for the flow distribution and mixing parameters were developed based on the measurement requirement.