DOI QR코드

DOI QR Code

Sound Absorption of Natural Fiber Composite from Sugarcane Bagasse and Coffee Silver Skin

  • Wachara KALASEE (Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus) ;
  • Putipong LAKACHAIWORAKUN (Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus) ;
  • Visit EAKVANICH (Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus) ;
  • Panya DANGWILAILUX (Department of Engineering, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus)
  • Received : 2023.06.15
  • Accepted : 2023.10.05
  • Published : 2023.11.25

Abstract

This study aimed to develop a sound-absorbing composite using sugarcane bagasse (SB) and coffee silver skin (CS) as raw materials. The composite boards were manufactured by bonding the fibers with Melamine Urea-Formaldehyde adhesive, ensuring a consistent thickness of 30 mm. Various densities were employed, namely 380, 450, and 520 kg/m3. The samples were fabricated with different fiber ratios, including SB100%, SB75% with CS25%, and SB50% with CS50%. The sound absorption coefficient (SAC) and noise reduction coefficient (NRC) were measured using the impedance tube method within a frequency range of 63-6,300 Hz. The experimental results revealed that the mixing ratio of CS exerted a notable influence on enhancing the SAC, while the density of the composite board exhibited a significant impact on increasing both the SAC and NRC. Among the densities tested, the optimal value was observed at 520 kg/m3, yielding a SAC value of 0.65 at a frequency of 1,000 Hz and an NRC value of 0.55 for the SB50-CS50 composite plate. These findings underscore the importance of considering the CS mixing ratio and composite board density when aiming to optimize sound absorption properties.

Keywords

Acknowledgement

The authors extend their appreciation to Aica Hatyai Co., Ltd. and Ban Tham Sing Coffee Group Community Enterprise for their generous support in providing raw materials for this research. Special thanks to Rajamangala University of Technology Phra Nakhon (RMUTP) and King Mongkut's Institute of Technology Ladkrabang (KMITL), Prince of Chumphon Campus, for providing the invaluable opportunity to conduct this research.

References

  1. Abd ALRahman, L., Raja, R.I., Rahman, R.A., Ibrahim, Z. 2014. Comparison of acoustic characteristics of date palm fibre and oil palm fibre. Research Journal of Applied Sciences, Engineering and Technology 7(8): 1655-1660. https://doi.org/10.19026/rjaset.7.445
  2. Asdrubali, F. 2006. Survey on the acoustical properties of new sustainable materials for noise control. In: Tampere, Finland, Proceedings of the Euronoise 2006 Conference, pp. 1-10.
  3. Bastos, L.P., de Melo, G.S.V., Soeiro, N.S. 2012. Panels manufactured from vegetable fibers: An alternative approach for controlling noises in indoor environments. Advances in Acoustics and Vibration 2012: 698737.
  4. Brian, N. 2019. South Korean imports of Thai raw sugar likely to increase in 2019. https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/agriculture/061819-south-korean-imports-of-thai-raw-sugar-likely-to-increase-in-2019
  5. Calis Acikbas, N., Ture, Y., Gurlek, E., Ozcan, S., Soylu, S., Acikbas, G., Gudu, T. 2018. Microstructural characterization, mechanical, physical and thermal properties of a diesel particulate filter. Arabian Journal for Science and Engineering 43: 1383-1394. https://doi.org/10.1007/s13369-017-2872-9
  6. de Carvalho, P.S., Dalla Nora, M., da Rosa, L.C. 2020. Development of an acoustic absorbing material based on sunflower residue following the cleaner production techniques. Journal of Cleaner Production 270: 122478.
  7. Ebnesajjad, S., Landrock, A.H. 2014. Adhesives Technology Handbook. William Andrew, Norwich, NY, USA.
  8. Esquivel, P., Jimenez, V.M. 2012. Functional properties of coffee and coffee by-products. Food Research International 46(2): 488-495. https://doi.org/10.1016/j.foodres.2011.05.028
  9. Fouladi, M.H., Nor, M.J.M., Ayub, M., Leman, Z.A. 2010. Utilization of coir fiber in multilayer acoustic absorption panel. Applied Acoustics 71(3): 241-249. https://doi.org/10.1016/j.apacoust.2009.09.003
  10. He, C., Zhang, B., Lu, J., Qiu, R. 2021. A newly discovered function of nitrate reductase in chemoautotrophic vanadate transformation by natural mackinawite in aquifer. Water Research 189: 116664.
  11. Hwang, S., Kim, J., Kwon, H., Seok, S.Y. 2013. Sound transmission loss through double walls. International Journal of Naval Architecture and Ocean Engineering 50(2): 64-68.
  12. Iswanto, A.H., Hakim, A.R., Azhar, I., Wirjosentono, B., Prabuningrum, D.S. 2020. The physical, mechanical, and sound absorption properties of sandwich particleboard (SPb). Journal of the Korean Wood Science and Technology 48(1): 32-40. https://doi.org/10.5658/WOOD.2020.48.1.32
  13. Jamaludin, M.A., Bahari, S.A., Zakaria, M.N., Saipolbahri, N.S. 2020. Influence of rice straw, bagasse, and heir combination on the properties of binderless particleboard. Journal of the Korean Wood Science and Technology 48(1): 22-31. https://doi.org/10.5658/WOOD.2020.48.1.22
  14. Jang, C., Hui, S., Lu, W., Cowan, A.J., Morscher, R.J., Lee, G., Liu, W., Tesz, G.J., Birnbaum, M.J., Rabinowitz, J.D. 2018a. The small intestine converts dietary fructose into glucose and organic acids. Cell Metabolism 27(2): 351-361.E3. https://doi.org/10.1016/j.cmet.2017.12.016
  15. Jang, E.S. 2022a. Experimental investigation of the sound absorption capability of wood pellets as an eco-friendly material. Journal of the Korean Wood Science and Technology 50(2): 126-133. https://doi.org/10.5658/WOOD.2022.50.2.126
  16. Jang, E.S. 2022b. Investigation of sound absorption ability of Acanthopanax senticosus wastes. Journal of the Korean Wood Science and Technology 50(6): 404-413. https://doi.org/10.5658/WOOD.2022.50.6.404
  17. Jang, E.S. 2022c. Investigation of sound absorption ability of hinoki cypress (Chamaecyparis obtusa) cubes. Journal of the Korean Wood Science and Technology 50(5): 365-374. https://doi.org/10.5658/WOOD.2022.50.5.365
  18. Jang, E.S. 2022d. Peanut shells as an environmentally beneficial sound-absorbing material. Journal of the Korean Wood Science and Technology 50(3): 179-185. https://doi.org/10.5658/WOOD.2022.50.3.179
  19. Jang, E.S. 2022e. Use of pine (Pinus densiflora) pollen cones as an environmentally friendly sound-absorbing material. Journal of the Korean Wood Science and Technology 50(3): 186-192. https://doi.org/10.5658/WOOD.2022.50.3.186
  20. Jang, E.S., Kang, C.W., Kang, H.Y., Jang, S.S. 2018b. Sound absorption property of traditional Korean natural wallpaper (Hanji). Journal of the Korean Wood Science and Technology 46(6): 703-712. https://doi.org/10.5658/WOOD.2018.46.6.703
  21. Jariwala, H.J., Syed, H.S., Pandya, M.J., Gajera, Y.M. 2017. Noise pollution & human health: A review. Indoor and Built Environment 1(1): 1-4.
  22. Jung, S.S., Jho, M.J., Kook, C., Kim, S.W. 2001. Determination of sound absorption coefficient and impedance in impedance tubes. In: Mokpo, Koera, Proceedings of the Korean Society for Noise and Vibration Engineering Conference, pp. 244-249.
  23. Kang, C.W., Jang, E.S., Jang, S.S., Kang, H.Y. 2018a. Comparison of transfer function method and reverberation room method in measuring the sound absorption coefficient of rice straw particle mat. Journal of the Korean Wood Science and Technology 46(4): 362-367. https://doi.org/10.5658/WOOD.2018.46.4.362
  24. Kang, C.W., Jang, E.S., Jang, S.S., Kang, H.Y. 2018b. Measurement of sound transmission loss in a sound barrier filled with the rice-straw particles by the transfer function and laboratory measurement methods. Journal of the Korean Wood Science and Technology 46(4): 338-345. https://doi.org/10.5658/WOOD.2018.46.4.338
  25. Kang, C.W., Lee, N.H., Jang, S.S., Kang, H.Y. 2019. Sound absorption coefficient and sound transmission loss of rice hull mat. Journal of the Korean Wood Science and Technology 47(3): 290-298. https://doi.org/10.5658/WOOD.2019.47.3.290
  26. Kim, C., Chang, T., Kim, D.S. 2012. Characteristics analysis of highway traffic noise. Transactions of the Korean Society for Noise and Vibration Engineering 22(12): 1191-1198. https://doi.org/10.5050/KSNVE.2012.22.12.1191
  27. Koizumi, T., Tsujiuchi, N., Adachi, A. 2002. The development of sound absorbing materials using natural bamboo fibers. WIT Transactions on the Built Environment 59: 157-166.
  28. Kook, J.H., Jung, C.W., Yun, J.H., Kim, J.S. 2007. Experimental study on wall sound transmission loss at construction equipment machinery room. In: Mokpo, Korea, Proceedings of the Korean Society for Noise and Vibration Engineering Conference, pp. 701-705.
  29. Lee, J.H., Kim, B.S., Kim, K.J. 2011. Study of sound transmission characteristics of using a scale reverberation chamber and vibro acoustic FEM. In: Mokpo, Korea, Proceedings of the Korean Society for Noise and Vibration Engineering Conference, pp. 92-95.
  30. Lee, Y.S. 2023. Work culture, pandemic fuel Koreans' craving for caffeine. https://www.koreaherald.com/view.php?ud=20230314000601
  31. Linton, S.J., Kecklund, G., Franklin, K.A., Leissner, L.C., Sivertsen, B., Lindberg, E., Svensson, A.C., Hansson, S.O., Sundin, O., Hetta, J., Bjorkelund, C., Hall, C. 2015. The effect of the work environment on future sleep disturbances: A systematic review. Sleep Medicine Reviews 23: 10-19. https://doi.org/10.1016/j.smrv.2014.10.010
  32. Murthy, P.S., Naidu, M.M. 2012. Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food Bioprocess Technology 5: 897-903. https://doi.org/10.1007/s11947-010-0363-z
  33. Nandanwar, A., Kiran, M.C., Varadarajulu, K.C. 2017. Influence of density on sound absorption coefficient of fibre board. Open Journal of Acoustics 7: 1-9. https://doi.org/10.4236/oja.2017.71001
  34. Putra, A., Abdullah, Y., Efendy, H., Farid, W.M., Ayob, M.R., Py, M.S. 2013. Utilizing sugarcane wasted fibers as a sustainable acoustic absorber. Procedia Engineering 53: 632-638. https://doi.org/10.1016/j.proeng.2013.02.081
  35. Putra, A., Or, K.H., Selamat, M.Z., Nor, M.J.M., Hassan, M.H., Prasetiyo, I. 2018. Sound absorption of extracted pineapple-leaf fibres. Applied Acoustics 136: 9-15. https://doi.org/10.1016/j.apacoust.2018.01.029
  36. Qui, H., Enhui, Y. 2018. Effect of thickness, density and cavity depth on the sound absorption properties of wool boards. Autex Research Journal 18(2): 203-208. https://doi.org/10.1515/aut-2017-0020
  37. Sharma, S.K., Shukla, S.R., Sethy, A.K. 2020. Acoustical behaviour of natural fibres-based composite boards as sound-absorbing materials. Journal of the Indian Academy of Wood Science 17: 66-72. https://doi.org/10.1007/s13196-020-00255-z
  38. Woldesenbet, A.G., Woldeyes, B., Chandravanshi, B.S. 2014. Characteristics of wet coffee processing waste and its environmental impact in Ethiopia. International Journal of Research in Engineering and Science 2(4): 1-5.