• Title/Summary/Keyword: mixing coefficient

Search Result 433, Processing Time 0.028 seconds

Mixing Effect by the Geometry of Static Mixer with Turbulent In-Situ Mixing Process (난류 용탕 In-Situ 합성법을 위한 스태틱 믹서의 형상에 따른 혼합 효과)

  • Lee, Dae-Sung;Kim, Hyo-Geun;Ha, Man-Yeong;Park, Yong-Ho;Park, Ik-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1307-1312
    • /
    • 2005
  • Turbulent in-situ mixing process is a new material process technology to get dispersed phase in nanometer size by controlling reaction of liquid/liquid, liquid/solid and liquid/gas, flow and solidification speed simultaneously. In this study mixing, the key technology to this synthesis method will be studied by computational fluid dynamics. For the simulation of mixing of liquid metal, static mixers will be investigated. Two inlets for different liquid metal meet and merge like 'Y' shape tube. The tube has various shapes such as straight and curved. Also, the radius of curve will be varied. The performance of mixer will be evaluated with quantitative analysis with coefficient of variance of mass fraction. Also, detailed plots of intersection will be presented to understand effect of mixer shape on mixing.

Development of Sequential Mixing Model for Analysis of Shear Flow Dispersion (전단류 분산 해석을 위한 순차혼합모형의 개발)

  • Seo, Il Won;Son, Eun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.335-344
    • /
    • 2006
  • In this study, sequential mixing model (SMM) was proposed based on the Taylor's theory which can be summarized as the fact that longitudinal advection and transverse diffusion occur independently and then the balance between the longitudinal shear and transverse mixing maintains. The numerical simulation of the model were performed for cases of different mixing time and transverse velocity distribution, and the results were compared with the solutions of 1-D longitudinal dispersion model (1-D LDM) and 2-D advection-dispersion model (2-D ADM). As a result it was confirmed that SMM embodies the Taylor's theory well. By the comparison between SMM and 2-D ADM, the relationship between the mixing time and the transverse diffusion coefficient was evaluated, and thus SMM can integrate 2-D ADM model as well as 1-D LDM model and be an explanatory model which can represents the shear flow dispersion in a visible way. In this study, the predicting equation of the longitudinal dispersion coefficient was developed by fitting the simulation results of SMM to the solution of 1-D LDM. The verification of the proposed equation was performed by the application to the 38 sets of field data. The proposed equation can predict the longitudinal dispersion coefficient within reliable accuracy, especially for the river with small width-to-depth ratio.

A Study on the Electrical Characteristics of Heat-generation Mortar mixing Graphite (흑연을 혼합한 발열모르타르의 전기적 특성에 관한 연구)

  • Park, Sang-Jun;Won, Cheol;Lee, Sang-Soo;Kwon, Yeog-Ho;Park, Chil-Lim
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.137-142
    • /
    • 1997
  • From the results of study on the electrical characteristics of heat-generation mortar used graphite as fine aggregates is summerized as following. The primary purpose of this study is the mixing ratio of graphite (35%, 50%/Sg), curing conditions (autoclave, steam, surface, underwater) and shape change (length, section of the electric heat-generation mortar). In case of the test condition with the steam curing condition appearance to most excellent heat-generation reproducibility. And temperature a coefficient of electric heat-generation mortar change from is in inverse proportion to the temperature a coefficient of direct proportion as the ratio of graphite mixing increased.

  • PDF

A CORRELATION FOR SINGLE PHASE TURBULENT MIXING IN SQUARE ROD ARRAYS UNDER HIGHLY TURBULENT CONDITIONS

  • Jeong, Hae-Yong;Ha, Kwi-Seok;Kwon, Young-Min;Chang, Won-Pyo;Lee, Yong-Bum
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.809-818
    • /
    • 2006
  • The existing experimental data related to the turbulent mixing factor in rod arrays is examined and a new definition of the turbulent mixing factor is introduced to take into account the turbulent mixing of fluids with various Prandtl numbers. The new definition of the mixing factor is based on the eddy diffusivity of energy. With this definition of the mixing factor, it was found that the geometrical parameter, ${\delta}_{ij}/D_h$ correlates the turbulent mixing data better than Sid, which has been used frequently in existing correlations. Based on the experimental data for a highly turbulent condition in square rod arrays, a correlation describing turbulent mixing dependent on the parameter ${\delta}_{ij}/D_h$ has been developed. The correlation is insensitive to the Re number and it takes into account the effect of the turbulent Prandtl number. The proposed correlation predicts a reasonable mixing even at a lower S/d ratio.

Chloride Ion Diffusion Coefficient and Compressive Strength of the Concrete Produced by Ready Mixed Concrete Company in Busan (부산지역 레미콘사의 콘크리트의 압축강도와 염소이온 확산계수)

  • Park, Dong-Cheon;Bang, Jung-Suk;Kim, Yong-Ro;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.11-12
    • /
    • 2017
  • The properties of concrete produced by ready mixed concrete company in Busan were tested. Because the concrete was mixed with blast furnace slag and fly ash, the compressive strength and chloride ion diffusion coefficient were lower than OPC concrete even though the specified concrete strength was same. If the durability about salt attack were satisfied, the concrete of lower specified concrete strength would be adopted to concrete mixing design.

  • PDF

Permeability and Consolidation Characteristics of Clayey Sand Soils (점토 함유량에 따른 점토질 모래의 투수 및 압밀 특성 평가)

  • Kim, Kwangkyun;Park, Duhee;Yoo, Jin-Kwon;Lee, Janggeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.61-70
    • /
    • 2013
  • Evaluation of permeability and coefficient of consolidation of clayey sand is critical in analyzing ground stability or environmental problems such as prediction of pollutant transport in groundwater. In this study, permeability tests using a flexible wall permeameter are performed to derive the coefficient of consolidation and permeability of reconstituted soil samples with various mixing ratios of kaolin clays and two different types of sands, which are Jumunjin and Ottawa sands. The test results indicate that the coefficient of consolidation and permeability plots linearly against clay contents in semi-log scale graphs for low clay mixing ratios ranging between 10 to 30%. It is also demonstrated that coefficient of consolidation and permeability of sand and clay mixture are dependent on the soil structure. Contrary to previous findings, the permeability is shown to be independent of the void ratio at low mixing ratios, which can be classified as non-floating fabric. The permeability decreases with the void ratio for floating fabric.

Numerical Analyses of Three-Dimensional Thermo-fluid flow through Mixing Vane in A Subchannel of Nuclear Reactor (원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석)

  • Choi, Sang-Chul;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.311-318
    • /
    • 2003
  • The present work evaluates the effects of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly. by obtaining velocity and pressure fields. turbulent intensity. flow-mixing factors. heat transfer coefficient and friction factor using three-dimensional RANS analysis. Four different shapes of mixing vane. which were designed by the authors were tested to evaluate the performances in enhancing the heat transfer. Standard k-$\varepsilon$ model is used as a turbulence closure model. and. periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant. but the twist angle of mixing vane is changed. The results with three turbulence models were compared with experimental data.

Numerical Analyses of Three-Dimensinal Thermo-Fluid Flow through Mixing Vane in A Subchannel of Nuclear Reactor (원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석)

  • Choi S.C.;Kim K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.79-87
    • /
    • 2002
  • The present work analyzed the effect of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly, by obtaining velocity and pressure fields, turbulent intensity, flow-mixing factors, heat transfer coefficient and friction factor using three-dimensional RANS analysis. NJl5, NJ25, NJ35, NJ45, which were designed by the authors, were tested to evaluate the performances in enhancing the heat transfer. Standard $\kappa-\epsilon$ model is used as a turbulence closure model, and, periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant, but the twist angle of mixing vane is changed. The results with three turbulence models( $\kappa-\epsilon$, $\kappa-\omega$, RSM) were compared with experimental data.

  • PDF

Comparison of carbon dioxide volume mixing ratios measured by GOSAT TANSO-FTS and TCCON over two sites in East Asia

  • Hong, Hyunkee;Lee, Hanlim;Jung, Yeonjin;Kim, Wookyung;Kim, Jhoon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.657-662
    • /
    • 2013
  • The comparison between $CO_2$ volume mixing ratios observed by GOSAT and TCCON from September 2009 through November 2012 was performed at Tsukuba and Saga, two downwind sites in East Asia. The temporal trends of $CO_2$ values obtained from GOSAT show good agreement with those observed by TCCON at these two by the TCCON, showing a coefficient of determination ($R^2$) of 0.65. The regression slop we obtained was 0.92, showing a small bias of GOSAT $CO_2$ values compared to those observed by TCCON. However, we found the higher correlation in fall and winter than that in spring and summer. The $CO_2$ volume mixing ratios observ sites. The $CO_2$ volume mixing ratios observed by GOSAT are also in good agreement with those measured ed by GOSAT are in good agreement with those measured by the TCCON at those two sites in fall and winter, showing a coefficient of determination ($R^2$) of 0.66 where as the correlation of determination obtained between GOSAT and TCCON was only 0.27 in spring and summer.

An Experimental Study on Manufacturing Permeable Concrete Blocks from Recycled Industrial By-Products of Oyster Shell and Blast Furnace Slag (굴패각 및 고로슬래그 산업부산물을 재활용한 콘크리트 투수블록의 제조에 대한 실험적 연구)

  • Seok-Hong Eo;Won-Seok Huh;Sang-Hoon Ha;Chang-Ryeol Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1135-1144
    • /
    • 2023
  • In this paper, bending strength and permeability tests were conducted on concrete permeable blocks manufactured by recycling industrial by-products of oyster shell and blast furnace slag to measure and compare bending strength and permeability coefficient, and present experimental research results. To this end, a total of 54 specimens with a size of 200x200x60mm for surface layer and base layer were manufactured, and bending strength and permeability test were carried ourt accoridng to KS F 4419. Eighteen types of mixing designs were implemented by varying the mixing and replacement rates of oyster shells and blast furnace slag. As a result of the experiment, the higher the mixing ratio of oyster shell, the lower the bending strength and the permeability coefficient. Thereafter, a total of three permeable blocks with dimensions of 200x200x60mm were manufactured and subjected to bending strength and permeability tests according to KS F 4419. As a result of the test, the bending strength satisfies the standard of KS F 4419, and the permeability coefficient is 12 times higher than the standard of KS F 4419. It seems that the proper mixing of oyster shells and blast furnace slag increases the amount of air, and further research on durability and economic feasibility of materials used to manufacture permeable blocks is required.