• Title/Summary/Keyword: mixed-integer programming

Search Result 389, Processing Time 0.023 seconds

Chance-constrained Scheduling of Variable Generation and Energy Storage in a Multi-Timescale Framework

  • Tan, Wen-Shan;Abdullah, Md Pauzi;Shaaban, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1709-1718
    • /
    • 2017
  • This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) approach for generation scheduling of a power grid. SDMS considers flexible resource options including conventional generation flexibility in a chance-constrained day-ahead scheduling optimization (DASO). The prime objective of the DASO is the minimization of the daily production cost in power systems with high penetration scenarios of variable generation. Furthermore, energy storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). DASO simulation results are used as the base starting-point values in the hour-ahead online rolling RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid flexibility, to balance out the deviation between predicted and actual net load demand values. Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind forecasting.

A Study on the Application of Asynchronous Team Theory for QVC and Security Assessment in a Power System (전력계통의 무효전력 제어 및 안전도 평가를 위한 Asynchronous Team 이론의 적용에 관한 연구)

  • 김두현;김상철
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.67-75
    • /
    • 1997
  • This paper presents a study on the application of Asynchronous Team(A-Team) theory for QVC(Reactive power control) and security assessment in a power system. Reactive power control problem is the one of optimally establishing voltage level given reactive power sources, which is very important problem to supply the demand without interruption and needs methods to alleviate a bus voltage limit violation more quickly. It can be formulated as a mixed-integer linear programming(MILP) problem without deteriorating of solution accuracy to a certain extent. The security assessment is to estimate the relative robustness of the system and deterministic approach based on AC load flow calculations is adopted to assess it, especially voltage security. A distance measure, as a measurement for voltage security, is introduced. In order to analyze the above two problem, reactive power control and static security assessment, In an integrated fashion, a new organizational structure, called an A-team, is adopted. An A-team is well-suited to the development of computer-based, multi-agent systems for operation of large-scaled power systems. In order to verify the usefulness of the suggested scheme herein, modified IEEE 30 bus system is employed as a sample system. The results of a case study are also presented.

  • PDF

A Model Interconnecting ISP Networks (ISP 네트워크간 상호접속 모델)

  • Choi, Eun-Jeong;Tcha, Dong-Wan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.388-393
    • /
    • 2005
  • Private peering, public peering and transit are three common types of interconnection agreements between providers in the Internet. An important decision that an Internet service provider (ISP) has to make is which private peering/transit ISPs and Internet exchanges (IXs) to connect with to transfer traffic at a minimal cost. In this paper, we deal with the problem to find the minimum cost set of private peering/transit ISPs and IXs for a single ISP. There are given a set of destinations with traffic demands, and a set of potential private peering/transit ISPs and IXs with routing information (routes per destination, the average AS-hop count to each destination, etc.), cost functions and capacities. Our study first considers all the three interconnection types commonly used in real world practices. We show that the problem is NP-hard, and propose a heuristic algorithm for it. We then evaluate the quality of the heuristic solutions for a set of test instances via comparison with the optimal ones obtained by solving a mixed integer programming formulation of the problem. Computational results show that the proposed algorithm provides near-optimal solutions in a fast time.

  • PDF

Designing a Distribution Network for Faster Delivery of Online Retailing : A Case Study in Bangkok, Thailand

  • Amchang, Chompoonut;Song, Sang-Hwa
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.5
    • /
    • pp.25-35
    • /
    • 2018
  • Purpose - The purpose of this paper is to partition a last-mile delivery network into zones and to determine locations of last mile delivery centers (LMDCs) in Bangkok, Thailand. Research design, data, and methodology - As online shopping has become popular, parcel companies need to improve their delivery services as fast as possible. A network partition has been applied to evaluate suitable service areas by using METIS algorithm to solve this scenario and a facility location problem is used to address LMDC in a partitioned area. Research design, data, and methodology - Clustering and mixed integer programming algorithms are applied to partition the network and to locate facilities in the network. Results - Network partition improves last mile delivery service. METIS algorithm divided the area into 25 partitions by minimizing the inter-network links. To serve short-haul deliveries, this paper located 96 LMDCs in compact partitioning to satisfy customer demands. Conclusions -The computational results from the case study showed that the proposed two-phase algorithm with network partitioning and facility location can efficiently design a last-mile delivery network. It improves parcel delivery services when sending parcels to customers and reduces the overall delivery time. It is expected that the proposed two-phase approach can help parcel delivery companies minimize investment while providing faster delivery services.

A Study of Optimal Fuel-Mix Considering Power Generation Operation (발전기 출력특성을 고려한 최적전원구성 연구)

  • Jung, Young-Beom;Kim, Kil-Sin;Park, Chang-Ho;Yoon, Yong-Beom
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.28-37
    • /
    • 2011
  • Though Korea has introduced CBP(Cost Based pool) power trading system since 2001, long-term Generation system planning has been executed by government for Cost minimization every 2 years. Until currently the model which is used for Generation system planning and best-mix only considers cost minimization and total yearly or quarterly electricity demand every year. In a view point of one day power supply operation, technical characteristics, like the ramp up/down rate of total generation system, minimum up/down time and GFRQ(Governor Free Response Quantity), are very important. this paper analyzes Optimal Fuel-Mix for 2022 Korea generation system satisfying these constraints of each fuel type and considering pump storage plants, construction cost and $CO_2$ emission charge Using MILP(Mixed Integer Linear Programming) method. Also the sensitivity analysis which follows in future power industry environmental change accomplished.

Efficient Logical Topology Design Considering Multiperiod Traffic in IP-over-WDM Networks

  • Li, Bingbing;Kim, Young-Chon
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • In recent years energy consumption has become a main concern for network development, due to the exponential increase of network traffic. Potential energy savings can be obtained from a load-adaptive scheme, in which a day can be divided into multiple time periods according to the variation of daily traffic patterns. The energy consumption of the network can be reduced by selectively turning off network components during the time periods with light traffic. However, the time segmentation of daily traffic patterns affects the energy savings when designing multiperiod logical topology in optical wavelength routed networks. In addition, turning network components on or off may increase the overhead of logical topology reconfiguration (LTR). In this paper, we propose two mixed integer linear programming (MILP) models to design the optimal logical topology for multiple periods in IP-over-WDM networks. First, we formulate the time-segmentation problem as an MILP model to optimally determine the boundaries for each period, with the objective to minimize total network energy consumption. Second, another MILP formulation is proposed to minimize both the overall power consumption (PC) and the reconfiguration overhead (RO). The proposed models are evaluated and compared to conventional schemes, in view of PC and RO, through case studies.

Fiber-Optic Network Design Supporting Network Survivability (망 생존도를 보장하는 광전송망 설계)

  • 이인행;정순기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.422-434
    • /
    • 2002
  • We propose 3-layered hierarchical fiber-optic backbone transmission network composed of B-DCS, Backbone ring, Edge ring for efficient transmission of high capacity traffic and consider design method to ensure network survivability of each layer at affordable cost. Mathematical ring-construction cost minimization using MIP(Mixed Integer Programming) models results in NP-complete problem. So, it is hard to solve it within reasonable computing time. on a large-scale network. Therefore we develop heuristic algorithms solving WSCAP(Working and Spared Channel Assignment Problem) for B-DCS, MRLB(Multi-Ring Load Balancing) problem for Backbone ring, and ORLB(Overlayed Ring Load Balancing) problem for Edge ring and show their usefulness through case study.

An Optimization Algorithm for the Two-Echelon Capacitated Facility Location Problem (용량 제약이 있는 이계층 설비 입지선정 문제의 최적화 해법)

  • Kim Eun Jeong;Gang Dong Hwan;Lee Gyeong Sik;Park Seong Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.137-144
    • /
    • 2003
  • We consider Two-echelon Single source Capacitated Facility Location Problem (TSCFLP). TSCFLP is a variant or Capacitated Facility Location Problem (CFLP). which has been an important issue in boa academic and industrial aspects. Given a set or possible facility locations in two echelons (warehouse / plant), a set or customers, TSCFLP is a decision problem to find a set or facility locations to open and to determine an allocation schedule that satisfies the demands or the customers and the capacity constraints or the facilities, while minimizing the overall cost. It ran be shown that TSCFLP Is strongly NP-hard For TSCFLf, few algorithms are known. which are heuristics. We propose a disaggregated version or the standard mixed integer programming formulation or TSCFLP We also provide a class or valid Inequalities Branch-and-price algorithm with rutting plane method Is used to find an optimal solution Efficient branching strategy compatible with subproblem optimization problems Is also provided. We report computational results or tests on 15 randomly generated instances.

  • PDF

Petri Net Modeling and Analysis for Periodic Job Shops with Blocking

  • Lee, Tae-Eog;Song, Ju-Seog
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.314-314
    • /
    • 1996
  • We investigate the scheduling problem for periodic job shops with blocking. We develop Petri net models for periodic job shops with finite buffers. A buffer control method would allow the jobs to enter the input buffer of the next machine in the order for which they are completed. We discuss difficulties in using such a random order buffer control method and random access buffers. We thus propose an alternative buffer control policy that restricts the jobs to enter the input buffer of the next machine in a predetermined order. The buffer control method simplifies job flows and control systems. Further, it requires only a cost-effective simple sequential buffer. We show that the periodic scheduling model with finite buffers using the buffer control policy can be transformed into an equivalent periodic scheduling model with no buffer, which is modeled as a timed marked graph. We characterize the structural properties for deadlock detection. Finally, we develop a mixed integer programming model for the no buffer problem that finds a deadlock-free optimal sequence that minimizes the cycle time.

  • PDF

Resource Allocation based on Hybrid Sharing Mode for Heterogeneous Services of Cognitive Radio OFDM Systems

  • Lei, Qun;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.149-168
    • /
    • 2015
  • In cognitive radio networks (CRNs), hybrid overlay and underlay sharing transmission mode is an effective technique for improving the efficiency of radio spectrum. Unlike existing works in the literature, where only one secondary user (SU) uses overlay and underlay modes, the different transmission modes should be allocated to different SUs, according to their different quality of services (QoS), to achieve the maximal efficiency of radio spectrum. However, hybrid sharing mode allocation for heterogeneous services is still a challenge in CRNs. In this paper, we propose a new resource allocation method for hybrid sharing transmission mode of overlay and underlay (HySOU), to achieve more potential resources for SUs to access the spectrum without interfering with the primary users. We formulate the HySOU resource allocation as a mixed-integer programming problem to optimize the total system throughput, satisfying heterogeneous QoS. To decrease the algorithm complexity, we divide the problem into two sub-problems: subchannel allocation and power allocation. Cutset is used to achieve the optimal subchannel allocation, and the optimal power allocation is obtained by Lagrangian dual function decomposition and subgradient algorithm. Simulation results show that the proposed algorithm further improves spectrum utilization with a simultaneous fairness guarantee, and the achieved HySOU diversity gain is a satisfactory improvement.