• Title/Summary/Keyword: mixed noise

Search Result 341, Processing Time 0.029 seconds

Utilization of Charcoal as an Environmentally Friendly Building Materials (II) - A Study on the Energy Saving and Sound Insulation Characteristics of Building Materials Prepared with Charcoal - (목탄을 이용한 친환경 건축자재 이용기술(II) - 목탄 함유 건축자재의 에너지 절감 및 차음 특성에 관한 연구)

  • Ahn, Byoung-Jun;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.41-52
    • /
    • 2011
  • This study was carried out to investigate the effect of energy saving and sound insulation of building materials mixed with charcoal. To investigate the functionality of building based on the difference of construction materials, three different experimental buildings were constructed. They were buildings built with the conventional construction materials (A), the charcoal construction materials (B), and the charcoal-sericite construction materials (C). The study showed that energy consumption could be reduced approximately 9.5% and 14.5% by replacing A with B and C, respectively. Especially, it is revealed that the lower outdoor temperature was, the higher energy saving effect was. Also, after shutoff the boiler switch the decrease rate of room temperature of the one using B was lower than those of others using A and C so that the room temperature at the building using B was higher by $3.5{\sim}4.2^{\circ}C$ in the 1 meter air above the ground and by $4.4{\sim}5.4^{\circ}C$ on the floor surface after 12 hours passed. In the building noise test the heavy-and light-weight impact sound of the plate, represented by criterion of noise between floors in multi-story building, tended to decrease in the test sample containing charcoal.

Radio Frequency Circuit Module BGA(Ball Grid Array) (Radio Frequency 회로 모듈 BGA(Ball Grid Array) 패키지)

  • Kim, Dong-Young;Jung, Tae-Ho;Choi, Soon-Shin;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.8-18
    • /
    • 2000
  • We presented a BGA(Ball Grid Array) package for RF circuit modules and extracted its electrical parameters. As the frequency of RF system devices increases, the effect of its electrical parasitics in the wireless communication system requires new structure of RF circuit modules because of its needs to be considered of electrical performance for minimization and module mobility. RF circuit modules with BGA packages can provide some advantages such as minimization, shorter circuit routing, and noise improvement by reducing electrical noise affected to analog and digital mixed circuits, etc. We constructed a BGA package of ITS(Intelligent Transportation System) RF module and measured electrical parameters with a TDR(Time Domain Reflectometry) equipment and compared its electrical parasitic parameters with PCB RF circuits. With a BGA substrate of 3${\times}$3 input and output terminals, we have found that self capacitance of BGA solder ball is 68.6fF, and self inductance 146pH, whose values were reduced to 34% and 47% of the value of QFP package structure. S11 parameter measurement with a HP4396B Network Analyzer showed the resonance frequency of 1.55GHz and the loss of 0.26dB. Routing length of the substrate was reduced to 39.8mm. Thus, we may improve electrical performance when we use BGA package structures in the design of RF circuit modules.

  • PDF

A Basic Study on the Differential Diagnostic System of Laryngeal Diseases using Hierarchical Neural Networks (다단계 신경회로망을 이용한 후두질환 감별진단 시스템의 개발)

  • 전계록;김기련;권순복;예수영;이승진;왕수건
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.197-205
    • /
    • 2002
  • The objectives of this Paper is to implement a diagnostic classifier of differential laryngeal diseases from acoustic signals acquired in a noisy room. For this Purpose, the voice signals of the vowel /a/ were collected from Patients in a soundproof chamber and got mixed with noise. Then, the acoustic Parameters were analyzed, and hierarchical neural networks were applied to the data classification. The classifier had a structure of five-step hierarchical neural networks. The first neural network classified the group into normal and benign or malign laryngeal disease cases. The second network classified the group into normal or benign laryngeal disease cases The following network distinguished polyp. nodule. Palsy from the benign laryngeal cases. Glottic cancer cases were discriminated into T1, T2. T3, T4 by the fourth and fifth networks All the neural networks were based on multilayer perceptron model which classified non-linear Patterns effectively and learned by an error back-propagation algorithm. We chose some acoustic Parameters for classification by investigating the distribution of laryngeal diseases and Pilot classification results of those Parameters derived from MDVP. The classifier was tested by using the chosen parameters to find the optimum ones. Then the networks were improved by including such Pre-Processing steps as linear and z-score transformation. Results showed that 90% of T1, 100% of T2-4 were correctly distinguished. On the other hand. 88.23% of vocal Polyps, 100% of normal cases. vocal nodules. and vocal cord Paralysis were classified from the data collected in a noisy room.

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

Improving target recognition of active sonar multi-layer processor through deep learning of a small amounts of imbalanced data (소수 불균형 데이터의 심층학습을 통한 능동소나 다층처리기의 표적 인식성 개선)

  • Young-Woo Ryu;Jeong-Goo Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.225-233
    • /
    • 2024
  • Active sonar transmits sound waves to detect covertly maneuvering underwater objects and detects the signals reflected back from the target. However, in addition to the target's echo, the active sonar's received signal is mixed with seafloor, sea surface reverberation, biological noise, and other noise, making target recognition difficult. Conventional techniques for detecting signals above a threshold not only cause false detections or miss targets depending on the set threshold, but also have the problem of having to set an appropriate threshold for various underwater environments. To overcome this, research has been conducted on automatic calculation of threshold values through techniques such as Constant False Alarm Rate (CFAR) and application of advanced tracking filters and association techniques, but there are limitations in environments where a significant number of detections occur. As deep learning technology has recently developed, efforts have been made to apply it in the field of underwater target detection, but it is very difficult to acquire active sonar data for discriminator learning, so not only is the data rare, but there are only a very small number of targets and a relatively large number of non-targets. There are difficulties due to the imbalance of data. In this paper, the image of the energy distribution of the detection signal is used, and a classifier is learned in a way that takes into account the imbalance of the data to distinguish between targets and non-targets and added to the existing technique. Through the proposed technique, target misclassification was minimized and non-targets were eliminated, making target recognition easier for active sonar operators. And the effectiveness of the proposed technique was verified through sea experiment data obtained in the East Sea.

A Design of CMOS 5GHz VCO using Series Varactor and Parallel Capacitor Banks for Small Kvco Gain (작은 Kvco 게인를 위한 직렬 바랙터와 병렬 캐패시터 뱅크를 이용한 CMOS 5GHz VCO 설계)

  • Mi-Young Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.139-145
    • /
    • 2024
  • This paper presents the design of a voltage controlled oscillator (VCO) which is one of the key building blocks in modern wireless communication systems with small VCO gain (Kvco) variation. To compensate conventional large Kvco variation, a series varactor bank has been added to the conventional LC-tank with parallel capacitor bank array. And also, in order to achieve excellent phase noise performance while maintaining wide tuning range, a mixed coarse/fine tuning scheme(series varactor array and parallel capacitor array) is chosen. The switched varactor array bank is controlled by the same digital code for switched capacitor array without additional digital circuits. For use at a low voltage of 1.2V, the proposed current reference circuit in this paper used a current reference circuit for safety with the common gate removed more safely. Implemented in a TSMC 0.13㎛ CMOS RF technology, the proposed VCO can be tuned from 4.4GH to 5.3GHz with the Kvco (VCO gain ) variation of less than 9.6%. While consuming 3.1mA from a 1.2V supply, the VCO has -120dBc/Hz phase noise at 1MHz offset from the carrier of the 5.3 GHz.

DEVELOPMENT AND PERFORMANCE EVALUATION OF SOFTWARE SIMULATOR FOR APPROVING OF VLBI CORRELATION SUBSYSTEM (VLBI상관서브시스템의 검증을 위한 소프트웨어 시뮬레이터의 개발 및 성능시험)

  • Oh, Se-Jin;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Chung, Hyun-Soo;Lee, Chang-Hoon;Kim, Hyo-Ryoung;Kim, Kwang-Dong;Kang, Yong-Woo;Park, Sun-Yeop
    • Publications of The Korean Astronomical Society
    • /
    • v.23 no.2
    • /
    • pp.73-90
    • /
    • 2008
  • A software simulator is developed for verifying the VLBI Correlation Subsystem (VCS) trial product hardware. This software simulator includes the delay tracking, fringe rotation, bit-jump, FFT analysis, re-quantization, and auto/cross-correlation functions so as to confirm the function of the VCS trial product hardware. To verify the effectiveness of the developed software simulator, we carried out experiments using the simulation data which is a mixed signal with white noise and tone signal generated by software. We confirmed that the performance of this software simulator is similar as that of the hardware system. In case of spectral analysis and re-quantization experiment, a serious problem of the VCS hardware, which is not enough for expressing the data stream of FFT results specified in VCS hardware specification, was found by this software simulator. Through the experiments, the performance of software simulator was verified to be efficient. In future, we will improve and modify the function of software simulator to be used as a software correlator of Korea-Japan Joint VLBI Correlator (KJJVC).

$V_2O_5/V/V_2O_5$ based uncooled infrared detector by MEMS technology ($V_2O_5/V/V_2O_5$ 다층박막 및 MEMS기술을 이용한 비냉각형 적외선 감지 소자의 제작)

  • Han, Yong-Hee;Hur, Jae-Sung;Park, In-Hoon;Kim, Kun-Tae;Chi-Anh;Shin, Hyun-Joon;Sung Moon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.131-131
    • /
    • 2003
  • Surface micromachined uncooled IR detector with the optimized VOx bolometric layer was fabricated based on sandwich structure of the V$_2$O$_{5}$V/V$_2$O$_{5}$. In order to improve the detectivity of the IR detector, we optimized a few factors in the viewpoint of bolometric material. Vanadium oxide thin film is a promising material for uncooled microbolometers due to its high temperature coefficient of resistance at room temperature. It is, however, very difficult to deposit vanadium oxide thin films having high temperature coefficient of resistance and low resistance because of process limits in microbolometer fabrication. In order to increase the responsivity and decrease noise, we increase TCR of bolometric material and decrease room temperature resistance based on the sandwich structure of the V$_2$O$_{5}$V/V$_2$O$_{5}$ by conventional sputter. By oxygen diffusion through low temperature annealing of V$_2$O$_{5}$V/V$_2$O$_{5}$ in oxygen ambient, various mixed phase vanadium oxide was formed and we obtained TCR in range of-1.2 ~-2.6%/$^{\circ}C$ at room temperature resistance of 5~100k$\Omega$.mega$.

  • PDF

Synthesis of nano-crystalline slaked lime using design of experiment (실험계획법을 이용한 나노 결정 소석회 합성)

  • Kim, Jin-Seong;Kim, Jung-Woo;Lee, Hee-Soo;Kim, Yong-Nam;Shin, Hyun-Gyoo;Kim, Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.174-178
    • /
    • 2008
  • Nano-crystalline slaked lime was synthesized using design of experiment. In order to synthesize slaked lime, calcium chloride $(CaCl_2)$ and urea were used as starting materials. Calcium chloride solution and urea solution were mixed and heated in vessel that calcium carbonate was precipitated during heating. Precipitates were filtered, washed several times using D.I.water and ethanol and finally dried in oven. Slaked lime $(Ca(OH)_2)$ has been fabricated by the hydration of calcined $CaCO_3$. Design of experiment (Taguchi method) was used to optimize parameter, to minimize noise factors of experiment and to statistically analyze the results. Slaked lime having about 50 nm in optimized crystallite size could be obtained by calcination of $CaCO_3$ at $1000^{\circ}C$ for 0.5 h and hydration with D.I water containing ethanol and oxalic acid.

A Study on Signal Estimation of Modified Beamformer Method using Perturbation Covariance Matrix (섭동공분산행렬을 이용한 수정 빔형성기 방법의 신호 추정에 대한 연구)

  • Lee, Kwan-Hyeong;Cho, Tae-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.333-339
    • /
    • 2017
  • Transmission signal in wireless environment receives a signal in which a source signal, interference, and noise are mixed. The goal of this study is to estimate the desired signal from the received signal. In this paper, we have studied a method correctly estimating a target in spatial by modified beamformer method. The modified bemaformer uses an adaptive array antenna and perturbation matrix to obtain the optimal weight, and estimate the desired signal by radiating the beam in spatial. We estimate a desired signal of the target by improving resolution with the modified beamformer method which does not have complicated calculation amount. Through simulation, we compare and analyze the modified beamformer method and the MUSIC method with good resolution. In result of simulation, we showed that modified beamformer method has better resolution of 10degree than classical beamformer method and showed similar performance as the MUSIC method. The resolution of this paper was estimated to be about 5 degrees.