• Title/Summary/Keyword: mix-proportion

Search Result 354, Processing Time 0.029 seconds

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.

Development and Evaluation of Korean Diagnosis Related Groups: Medical service utilization of inpatients (한국형 진단명기준환자군의 개발과 평가: 입원환자의 의료서비스 이용을 중심으로)

  • Shin, Young-Soo;Lee, Young-Seong;Park, Ha-Young;Yeom, Yong-Kwon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.26 no.2 s.42
    • /
    • pp.293-309
    • /
    • 1993
  • With expanded and extended coverage of the national medical insurance and fast growing health care expenditures, appropriateness of health service utilization and quality of care are concerns of both health care providers and insurers as well as patients. An accurate patient classification system is a basic tool for effective health care policies and efficient health services management. A classification system applicable to Korean medical information-Korean Diagnosis Related Groups (K-DRGs)-was developed based on the U.S. Refined DRGs, and the performance of the developed system was assessed in this study. In the process of the development, first the Korean coding systems for diagnoses and procedures were converted to the systems used in the definition of the U.S. Refined DRGs using the mapping tables formulated by physician panels. Then physician panels reviewed the group definition, and identified medical practice patterns different in two countries. The definition was modified for the differences in K-DRGs. The process resulted in 1,199 groups in the system. Several groups in Refined DRGs could not be differentiated in K-DRGs due to insufficient medical information, and several groups could not be defined due to procedures which were not practiced in Korea. However, the classification structure of Refined DRGs was retained in K-DRGs. The developed system was evaluated fur its performance in explaining variations in resource use as measured by charges and length of stay(LOS), for both all and non-extreme discharges. The data base used in this evaluation included 373,322 discharges which was a random sample of discharges reviewed and payed by the medical insurance during the five-month period from September 1990. The proportion of variance in resource use which was reduced by classifying patients into K-DRGs-r-square-was comparable to the performance of the U.S. Refined DRGs: .39 for charges and .25 for LOS for all discharges, and .53 for charges and .31 for LOS for non-extreme discharges. Another measure analyzed to assess the performance was the coefficient of variation of charges within individual K-DRGs. A total of 966 K-DRGs (87.7%) showed a coefficient below 100%, and the highest coefficient among K-DRGs with more than 30 discharges was 159%.

  • PDF

A Hardening and Strength Properties of Magnesium Phosphate Mortars for Rapid Repair Materials (급속 보수용 마그네슘 인산염 모르타르의 경화 및 강도특성)

  • Oh, Hongseob;Lee, Inhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.103-110
    • /
    • 2019
  • Damage to the pavement system due to various causes will be required rapid repair work for reopening the vehicle traffic. The magnesium oxide phosphate composite(MPC) has a short curing time and is capable of early compressive strength development, is suitable for rapid repair materials. The aim of this study was to evaluate the hardening and compressive strength characteristics of MPC according to the water-binder (W / B) ratio and magnesium-phosphate(M / P) ratio in order to develop repair materials consisted with light burned magnesia and potassium dihydrogen phosphate. In order to ensure the workability in the field application, the difference of mechanical properties according to standard sand and ordinary sand and performance of retards were evaluated. The mix proportion with W/B ratio was about 35% and the M/P ratio was about 1.0 ~ 1.2 has a superior perfomance with strength and hardening condition. Especially, the strength of composite at only 1 day curing with W/B ratio of 0.35 and the M/P ratio of 1.2 was shown the higher than 25.0 MPa. Boric acid as a retarder was found to be suitable for ensuring the working time, and the purity of magnesium oxide was about 90 ~ 95%, which is effective for ensuring curing time and strength.

Sensory Evaluation of Quality and Constructability of Cement Mortar for Tile Direct Setting Method Depending on Mix Proportions (타일 떠붙임 시멘트 모르타르의 배합비 변화에 따른 품질 특성 및 시공성에 대한 관능 평가)

  • Hwang, Yin-Seong;Ki, Tae-Kyoung;Han, Dong-Yeop;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.11-19
    • /
    • 2021
  • The aim of the research is providing a fundamental data on quality and constructability of direct tile setting method depending on various cement to sand ratio for tiling dry cement mortar. A large number of tile setting failures reported is related with the cement mortar and its construction for tiling. Because of different materials of tiles, the properties of tiling dry cement mortar, an adhesive for tiling, can influence on quality and constructability of tiling differently. Practically, the easiest way of controlling the properties of the tiling dry cement mortar is to control the proportion of cement and sand. Hence, in this research, sand to cement ratio (S/C) was controlled. Since there is no standarized method on evaluating performance of dry cement mortar for tiling, a several sensory evaluation methods were suggested and executed. According to the experiments conducted in this research, the adhesive performance of cement mortar for tiles can be different depending on the sides such as tile and substrate. Additionally, depending on S/C, finishability, initial adhesive performance, and tile shifting resistance can be changed for ceramic tile. Therefore, under the conditions of this research, about 5 of S/C can be recommended for appropriate performace of tiling dry cement mortar.

The Case Study on the Design, Construction, Quality Control of Deep Cement Mixing Method (심층혼합처리공법(DCM)의 설계, 시공 및 품질관리 사례 연구)

  • Kim, Byung-Il;Park, Eon-Sang;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.19-32
    • /
    • 2021
  • In this study, evaluation and consideration of domestic/overseas design, construction, and quality control performed by the authors on the deep cement mixing method were performed, and improvements for the development of the DCM method were suggested in the future. As a result of this study, it was found that the cross-sectional area correction for strength is required during the laboratory test of mix proportion, and caution is required because the extrapolation method may lead to different results from the actual one. Applicable design methods should be selected in consideration of both the improvement ratio and the type of improvement during design, and it was confirmed that the allowable compressive strength to which the safety factor was applied refers to the standard value for stability review and not the design parameters. In the case of the stress concentration ratio, rather than applying a conventional value, it was possible to perform economical design by calculating the experimental and theoretical stress concentration ratio reflecting the design conditions. In the case where pre-boring is expected during construction, if the increased water content is not large compared to the original, there were cases where a major problem did not occur even if the result that did not consider the increase in water content was used. In addition, it was confirmed that when the ratio of the top treatment length to the improved length is high, a small amount of design cement contents per unit length can be injected during construction. In the case of quality control, it was evaluated that D/4~2D/4 for single-axis and D/4 point for multi-axis were optimal for coring of grouting mixtures. As an item for quality control, it is judged that the standard that considers the TCR along with the unconfined compressive strength of grouting mixtures is more suitable for the domestic situation.

Experimental Study on the Reological Properties of Carbon Nano Materials as Cement Composites (탄소계 나노소재를 적용한 시멘트 페이스트 복합체의 유변학적 특성에 대한 연구)

  • Kim, Won-Woo;Moon, Jae-Heum;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.227-234
    • /
    • 2022
  • In this study, the rheological properties of cement paste composites applied with carbon-based nano-materials were experimental analyzed. Flow table and rheological properties, compressive strength were measured in the cement paste using graphene oxide asqueous solution and carbon nanotube aqueous solution. When carbon nano-materials was mixed in an aqueous solution, flow decreased and plastic viscosity and shear stress were increased. In particular, graphene oxide rapidly increased the plastic viscosity and shear stress. In the case of carbon nanotube aqueous solution, when less than 0.2 % was mixed, the increase rate was low compared to graphene oxide. This is because the specific surface area of graphene, which is in the form of a plate, is large. The compressive strength showed a small amount in strength increase when graphene mix, and CNT had a strength about 112 % of OPC. Carbon-based nanomaterials, is considered that CNT are suitable more to be used construction materials. However, extra studies on the surfactant to be used for mixing proportion and dispersion will be needed.

Compressional and Shear Wave Properties of Cement Grout Including Carbon Fiber (탄소섬유를 포함한 시멘트 그라우트의 압축파 및 전단파 특성)

  • Choi, Hyojun;Cho, Wanjei;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.15-24
    • /
    • 2021
  • In Korea, which is mostly mountainous, the proportion of tunnel and underground space development are increasing. Although the ground is reinforced by applying the ground improvement method during underground space development, accidents still occur frequently in Korea. In the grouting method, a representative ground reinforcement method, the effect was judged by comparing the total amount of injection material with the amount of injection material used during the actual grouting construction. However, it is difficult to determine whether the ground reinforcement is properly performed during construction or within the target ground. In order to solve this problem, it is necessary to study a new method for quality control during or after construction by measuring electrical resistivity after performing grouting by mixing carbon fiber, which is a conductive material, and microcement, which is a grout material. In this study, as a basic study, a cement specimen mix ed with 0%, 3%, 5%, 7% of carbon fiber was prepared to evaluate the performance of the grout material mixed with carbon fiber, which is a conductive material. The prepared specimens were wet curing for 3 days, 7 days, and 28 days under 99% humidity, and then compression wave velocity and shear wave velocity were measured. As a result of the compression wave velocity and shear wave velocity measurement, it showed a tendency to increase with the increase in the compounding ratio of carbon fibers and the number of days of age, and it was confirmed that the elastic modulus and shear modulus, which are the stiffness of the material, also increased.

Quality Improvement of High Volume Fly Ash Concrete due to Early Strength Gain Admixture (조강형 혼화제에 의한 플라이애시 다량 치환 콘크리트의 품질 향상)

  • Han, Cheon-Goo;Park, Jong-Ho;Lee, Joung-Ah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.117-124
    • /
    • 2009
  • The purpose of the study was to improve quality of high volume fly ash concrete. The study evaluated on the possibility of early quality improvement of high volume fly ash concrete with early strength gain admixture ('GA' below) developed by the preceding research. The study regarded applying naphthalene admixture ('NA' below) to mix proportion substituting FA 15 % to be plain. In the event of substituting FA 20, 25 and 30 %, the study compared engineering properties of concrete with plain by applying GA. Because of features of fresh concrete, fluidity falls down when GA is applied. Therefore, its use amount shall be increased. Only, in W/B 60 %, it was beneficial since slump loss was reduced about 35~70 mm than plain. The study could see that AE use should be increased proportionally since air content was reduced by coming from AE absorption operation of unburned coal content included in FA according to an increase in the amount of FA use. Reduction effect of bleeding could be anticipated since the amount of bleeding appeared at least in FA 20 %. Because of hardened concrete, time of setting appeared in the same level as plain when GA was applied. Therefore, it is judged that delay of setting can be reduced. In compressive strength, the study could check the same strength development as plain when GA was applied, having nothing to do with W/B and curing temperature. However, it is thought that we shall pay attention to GA use in the event of FA 30 % substitution. Freezing and melting resistance had less early value than plain. However, it is judged that there will be no problem of frost resistance since there is no a large difference between freezing and melting resistance and plain in overall. In accelerated neutralization, it was analyzed that a problem of weakening in neutralization appointed as a demerit when FA was applied in mass in proportion with GA use could be settled to some extent.

  • PDF

The Effects of the Intensity of Combined Training on Body Composition, HOMA-IR and HbA1c of Female Students of a Boarding High School (복합운동 강도가 기숙형학교 여고생의 신체조성, HOMA-IR 및 HbA1c에 미치는 영향)

  • Kwon, Sun-Ok;Jeong, Seon-Tae
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.124-132
    • /
    • 2010
  • Among students of 'K' boarding high school, located in 'B' city, 32 students whose % body fat was 30% or above were divided into three groups - two exercise groups and one control group. They performed Combined Training - a mix of weight training (WT) and step box training (SBT) - for 65 min a day, 3 days a week, for 8 weeks in total. Group A performed WT 70-80%$RM{\times}3$ sets+SBT (RPE 11-13)${\times}1$ set, and group B performed WT 70-80%$RM{\times}1$ set+SBT (RPE 11-13)${\times}3$ sets to yield data on changes of body composition (Soft Lean Mass, SLM), %fat, WHR), HbA1c, and HOMA-IR. Paired t-test was used to process data within each group. Pre- and post experiment differences rates (%diff) were used to perform one-way ANOVA (Duncan test) for group comparisons. The conclusions derived are as follows. Regarding body composition, exercise groups showed an increase in SLM, but there was no such change in the control group. WHR decreased in group A, but increased in the control group. The % body fat decreased in both exercise groups, but increased in the control group. As for the group comparisons, SLM in group A showed a greater increase than in group B and the control group. WHR in groups A and B showed a greater decrease than the control group. The % body fat in groups A and B showed a greater decrease than the control group. The exercise groups showed a significant decrease in HOMA-IR, but the control group showed a significant increase in HOMA-IR. As for the group comparisons, groups A and B showed a greater decrease in HOMA-IR than the control group. The exercise groups showed a significant decrease in HbA1c, however, the control group showed no change in HbA1c. As for the group comparisons, group A showed a greater decrease in HbA1c than the control group. These results confirm that combined training is more effective in improving body composition and metabolic factors when it includes a high proportion of resistance training, rather than aerobic exercise. The results of the study suggest that it is advisable to set a high proportion of WT when deciding the intensity of combined training.

Anaerobic Co-Digestion Characteristics of Food Waste Leachate and Sewage Sludge (BMP test를 통한 음폐수와 하수슬러지의 병합소화 특성 평가)

  • Lee, Suyoung;Yoon, Young-Sam;Kang, Jun-Gu;Kim, Ki-Heon;Shin, Sun Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • We mix food waste leachate and sewage sludge by the proportion of 1:9, 3:7 and 5:5. It turns out that they produced 233, 298 and 344 $CH_4{\cdot}mL/g{\cdot}VS$ of methane gas. The result suggests that as the mixing rate of food waste leachate rises, the methane gas productions increases as well. And more methane gas is made when co-digesting sewage sludge and food waste leachate based on the mixing ratio, rather than digesting only sewage sludge alone. Modified Gompertz and Exponential Model describe the BMP test results that show how methane gas are produced from organic waste. According to the test, higher the mixing rate of food waste leachate is, higher the methane gas productions is. The mixing ratio of food waste leachate that produces the largest volume of methane gas is 3:7. Modified Gompertz model and Exponential model describe the test results very well. The correlation values($R^2$) that show how the results of model prediction and experiment are close is 0.92 to 0.98.