DOI QR코드

DOI QR Code

Compressional and Shear Wave Properties of Cement Grout Including Carbon Fiber

탄소섬유를 포함한 시멘트 그라우트의 압축파 및 전단파 특성

  • Choi, Hyojun (Department of Civil & Environmental Engineering, Dankook University) ;
  • Cho, Wanjei (Department of Civil & Environmental Engineering, Dankook University) ;
  • Yune, Chanyoung (Department of Civil Engineering, Gangneung Wonju National University)
  • Received : 2021.09.28
  • Accepted : 2021.10.28
  • Published : 2021.12.01

Abstract

In Korea, which is mostly mountainous, the proportion of tunnel and underground space development are increasing. Although the ground is reinforced by applying the ground improvement method during underground space development, accidents still occur frequently in Korea. In the grouting method, a representative ground reinforcement method, the effect was judged by comparing the total amount of injection material with the amount of injection material used during the actual grouting construction. However, it is difficult to determine whether the ground reinforcement is properly performed during construction or within the target ground. In order to solve this problem, it is necessary to study a new method for quality control during or after construction by measuring electrical resistivity after performing grouting by mixing carbon fiber, which is a conductive material, and microcement, which is a grout material. In this study, as a basic study, a cement specimen mix ed with 0%, 3%, 5%, 7% of carbon fiber was prepared to evaluate the performance of the grout material mixed with carbon fiber, which is a conductive material. The prepared specimens were wet curing for 3 days, 7 days, and 28 days under 99% humidity, and then compression wave velocity and shear wave velocity were measured. As a result of the compression wave velocity and shear wave velocity measurement, it showed a tendency to increase with the increase in the compounding ratio of carbon fibers and the number of days of age, and it was confirmed that the elastic modulus and shear modulus, which are the stiffness of the material, also increased.

대부분이 산악지역인 국내에서는 터널 및 지하공간개발의 비중이 점점 높아지고 있다. 지하공간개발 시 지반 개량공법을 적용하여 지반을 보강하지만 국내에서는 여전히 사건 사고가 빈번하게 발생하고 있다. 대표적인 지반 보강공법인 그라우팅 공법은 주입재의 총량과 실제 그라우팅 시공 시 사용한 주입재의 양을 비교하여 효과를 판정하였으며, 혹은 그라우팅 공법을 적용한 지반에 보링 후 시료의 일축압축강도 평가 혹은 현장 투수시험을 통하여 지반 보강여부를 판단하였다. 하지만, 시공 중 혹은 대상 지반 내에 지반 보강이 제대로 이루어졌는지는 판단하기는 어렵다. 이러한 문제를 해결하기 위해 전도성 재료인 탄소섬유와 그라우트 재료인 마이크로시멘트를 혼합하여 그라우팅을 수행한 후 전기비저항 측정을 통해 시공 중이나 시공 후에 품질관리가 가능한 새로운 방법에 대해 연구가 필요한 실정이다. 본 연구는 이에 대한 기초연구로 전도성 재료인 탄소섬유가 혼합된 그라우트 재의 성능을 평가하기 위해 탄소섬유 0%, 3%, 5%, 7%로 혼합된 시멘트 공시체를 제작하였으며, 제작한 공시체에 대하여 3일, 7일, 28일 습도 99%의 조건으로 습윤양생 시킨 후 압축파 속도 및 전단파 속도 측정을 수행하였다. 압축파 속도 및 전단파 속도 측정 결과 탄소섬유의 배합비 및 재령일수 증가에 따라 증가하는 경향을 보였으며, 재료의 강성인 탄성계수 및 전단탄성계수도 증가하는 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 국토교통부 건설기술연구개발사업의 연구비 지원(21SCIP-C151438-03) "지반함몰 및 액상화에 관한 지하안전 위험도 평가 고도화 기술 개발"에 의해 수행되었습니다.

References

  1. Cao, J. and Chung, D.D.L. (2001), Carbon fiber reinforced cement mortar improved by using acrylic dispersion as an admixture, Cement and Concrete Research, Vol. 31, issue 11, pp. 1633~1637. https://doi.org/10.1016/S0008-8846(01)00599-3
  2. Chen, B. and Liu, J. (2003), Effect of fibers on expansion of concrete with a large amount of high f-CaO fly ash, Cement and Concrete Research, Vol. 33, issue 10, pp. 1549~1552. https://doi.org/10.1016/S0008-8846(03)00098-X
  3. Cho, G. C. and Lee, I. M. (2002), Soil properties in relation to elastic wave, Korean Geotechnical Society, Vol. 18, No 6, pp. 83~101 (In Korean).
  4. Choi, H. J., Cho. W. J., Hwang, B. S. and Yune, C. Y. (2020), Mechanical properties of cement grout including conductive materials, Korean Geo-Environmental Society, Vol. 21, No. 12, pp. 35~41 (In Korean).
  5. Graham, R. K., Huang, B., Shu, X. and Burdette, E. G. (2013), Laboratory evaluation of tensile strength and energy absorbing properties of cement mortar reinforced with micro- and meso-sized carbon fibers, Construction and Building Materials, Vol. 44, pp. 751~756. https://doi.org/10.1016/j.conbuildmat.2013.03.071
  6. Jeon, W. W. (2021), Effects of applied stress, pore fluid types and concentrations on the eletrical conductivity of silica sand with varying amounts of graphite, Master's Thesis, Kyung Hee University (In Korean).
  7. Kim, H. S. (2011), Development and Applications of Piezoelectric Penetration Probe for In-Situ Measurement of Shear Wave Velocity Soft Clay, Ph.D. Thesis, Kyung Hee University (In Korean).
  8. Peyvandi, A., Soroushian, P., Balachandra, A. M. and Sobolev, K. (2013), Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets, Construction and Building Materials, Vol. 47, pp. 111~117. https://doi.org/10.1016/j.conbuildmat.2013.05.002
  9. Shu, X., Graham, R. K., Huang, B. and Burdette, E. G. (2015), Hybrid effects of carbon fibers on mechanical properties of Portland cement mortar, Materials & Design, Vol. 65, pp. 1222~1228. https://doi.org/10.1016/j.matdes.2014.10.015