• Title/Summary/Keyword: mix proportion ratio

Search Result 141, Processing Time 0.025 seconds

Influence of Water-Binder Ratio and Expansion Admixture on Mechanical Properties of Strain-Hardening Cement-Based Composite with Hybrid Steel and Polyethylene Fibers (강섬유와 폴리에틸렌 섬유를 함께 혼입한 SHCC의 물결합재비와 팽창재 치환유무에 따른 역학적 특성)

  • Kim, Sung-Ho;Lee, Young-Oh;Kim, Hee-Jong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.233-240
    • /
    • 2012
  • Hybrid SHCC is being researched actively for its excellent performance in controlling macro and micro cracks using macro and micro fibers, respectively. However, a significant autogenous shrinkage of SHCC is expected since it possesses high unit cement volume in its mix proportion, resulting in autogenous shrinkage cracks. Therefore, this study was performed to evaluate mechanical property of shrinkage-reducing type hybrid SHCC mixed together with steel fiber and PE fiber with excellent micro/macro crack controlling performance. In order to evaluate mechanical property of shrinkage-reducing type hybrid SHCC, replacement ratios of 0% and 10% of expansive admixture and water to binder ratios of 0.45, 0.3, and 0.2 were considered as variables. Then, shrinkage, compressive, flexural, and direct tensile tests were performed. The test results showed that mix proportion with W/B 0.3 significantly improved mechanical performance by using 10% replacement of expansive admixture.

Comparison of Nursing Workforce Supply and Employment in South Korea and Other OECD Countries (OECD 국가의 간호인력 현황과 한국 간호인력의 특성 분석)

  • Hong, Kyung Jin;Cho, Sung-Hyun
    • Perspectives in Nursing Science
    • /
    • v.14 no.2
    • /
    • pp.55-63
    • /
    • 2017
  • Purpose: This study aims to report on and compare the conditions of practicing nurses and nursing graduates in Korea and other OECD countries to suggest policy to improve nurse staffing in Korea. Methods: Data on nurses and nursing graduates from 34 OECD countries in 2015 (or the nearest year) were analyzed. The proportion of practicing nurses among nurses who were licensed to practice and nursing graduates per population and per the number of practicing nurses were examined. Results: The number of practicing nurses per 1,000 population in Korea was 5.9 and, in Korea, only 31.0% of licensed nurses were practicing, whereas the OECD average was 69.5%. Korea had the highest number of nursing graduates (109.0) per 100,000 population and the highest number of nursing graduates (183.5) per 1,000 practicing nurses in the OECD countries. Skill-mix analysis indicated that 52.2% of the practicing nurses in Korea were professional practicing nurses, which was the second-lowest among the OECD countries. The ratio of nurses' wages to those of physician specialists was 0.43 in the OECD countries. Conclusion: Nurse staffing and skill-mix in Korea were very low in comparison to other OECD countries. Policies for retention of nurses via improved working conditions are required.

Effect of Latex on Corrosion Resistance of Steel Rebar in Concrete (콘크리트 내에서 보강철근의 부식저항성에 미치는 라텍스의 효과)

  • Park, Sung-Ki;Won, Jong-Pil;Sung, Sang-Kyung;Park, Chan-Gi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.409-412
    • /
    • 2008
  • This study were evaluated the corrosion threshold reached at steel reinforcement in latex modified concrete(LMC). Accelerated testing was accomplished to the evalate the diffusion coefficient of LMC mix, and the time dependent constants of diffusion. Also, average chloride diffusion coefficient was estimated. From the average chloride ion diffusion coefficient, the time which critical chloride contents at depth of reinforcement steel was estimated. Test results indicated that the corrosion threshold reached at reinforcement in LMC are effected on the mix proportion factor including latex content, and water-cement ratio.

  • PDF

Evaluation of Optimum Mix Proportion and Filling Performance of High-fluidity Concrete for SCP Module charging (SCP 모듈 충전용 고유동 콘크리트의 최적배합 도출 및 채움성능 평가)

  • Park, Gi-Joon;Kim, Sung-Wook;Park, Jung-Jun;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.452-459
    • /
    • 2017
  • In recent years, to reduce self-weight of structural elements, the use of SCP (Steel Concrete Plate) instead of prestressed concrete is increasing. Because SCP has a complicated sectional shape and includes a large number of studs, the use of high-fluidity concrete is required. Therefore, in this study, to prevent the restrained shrinkage behavior by the stud, the effects of using an expansive agent (EA) and shrinkage reducing agent (SRA) were investigated, and the optimal mixture proportions to maximize the filling capacity were determined based on the fine aggregate ratio. The test results indicated that the combined use of EA and SRA exhibited the smallest shrinkage. The ratio of the crushed sand and washed sea sand was determined to be 5:5, and the proper fine aggregate ratio was found to be 55.6%, because when the ratio was too high, a decrease in strength and an increase in shrinkage strain were expected. The high-fluidity concrete effectively filled the large-sized SCP module.

A Study on Rheological Properties of Cement Paste using Expansive Additives by Kind & Replacement Ratio (팽창재 종류 및 치환율에 따른 시멘트 페이스트의 레올로지 특성)

  • Park, Chun-Young;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • To improve concrete tensile strength and bending strength, New plan that have more economical and simple manufacture process is groped. By an alternative plan, chemical pre-stressed concrete is presented. In this study, we analyzed the rheological properties of cement paste with the kind and replacement ratio of k-type CSA type expansive additives that is used mainly in domestic. and we suggested that the algorithm of a mixing plan in the chemical pre-stressed concrete and from this, we presented the basic report for the right mixing plan. From the results, Flow increased more or less according to use of expansive additives. This phenomenon was observed by increasing paste amount that shows as substitution for expansive additives that specific gravity is smaller than that of cement. As linear regression a result supposing paste that mix expansive additives by Bingham plastic fluid. The shear rate and shear stress expressed high interrelationship. therefore, flow analysis of quantitative was available. The plastic viscosity following to replacement ratio of expansive additives is no change almost, the yield value is decreased in proportion to the added amount of expansive additives. Through this experiment, we could evaluate rheological properties of cement paste using the expansive additives. Hereafter by an additional experiment, we must confirm stability assessment of material separation by using the aggregate with the kind and replacement ratio of expansive additives.

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • 김진만
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.67-76
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency. In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 20mm of flow value and above 300kgf/cm2 of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~l5% AG.

  • PDF

Optimal Mixture Proportion for High Performance Concrete Incorporating Ground Granulated Blast furnace Slag

  • Choi Jae-Jin;Kim Eun-Kyum;Yoo Jung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.473-480
    • /
    • 2005
  • In this study, a mix design for self compacting concrete was based on Okamura's method and concrete incorporated just a ground granulated blast furnace slag. Replacement ratio of slag is in the range of $20-80\%$ of cement matrix by volume. For the optimal self compactability in mixture incorporating ground granulated blast furnace slag, the paste and mortar tests were first completed. Then the slump flow, elapsed time of 500mm slump flow, V funnel time and filling height by U type box were conducted in concrete. The volume of coarse aggregate in self compacting concrete was in the range of $50-60\%$ to the solid volume percentage of coarse aggregate. Finally, the compressive and splitting tensile strengths were determined in the hardened self compacting concrete incorporating ground granulated blast furnace slag. From the test results, it is desirable for self compacting concrete that the replacement of ground granulated blast furnace slag is in the range of $40-60\%$ of cement matrix by volume and the volume of coarse aggregate to the solid volume percentage of coarse aggregate with a limit of $55\%$.

Chracteristics of Cement Mortar Mixed with Incinerated Urban Solid Waste (도시 쓰레기 소각재를 혼입한 시멘트 모르타르의 특성)

  • Chang, Chun-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2010
  • Differently from fly ash, the bottom ash produced from incinerated urban solid waste has been treated as an industrial waste matter, and almost reclaimed a tract form the sea. If this waste material is applicable to foam concrete as an fine aggregate, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and long-span bridge. This research has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was tested by compression strength, flexural strength, absorption ratio, density, expansion factor. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationship between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a optimal mix design proportion of foam light-weight concrete while bottom ash is used as an fine aggregate of the concrete.

A Fundamental Study on the Mix Design in High Volume Fly-Ash Concrete (플라이애시를 대량 사용한 콘크리트의 배합설계를 위한 기초적 연구)

  • 심재형;김재환;최희용;강석표;최세진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.641-646
    • /
    • 2001
  • Generally, when Fly-Ash was used as replacement material of cement in concrete, it might occur retardation of setting and hardening. So, it is unable to use a large amount of Fly-Ash as replacement for cement. However, if it is used as replacement material of fine aggregate in concrete, we can use a large amount of Fly-Ash and settle a problem of natural-aggregate exhaustion. Furthermore, engineering properties of High Volume Fly-Ash Concrete Is better than that of plain concrete But, the larger Fly-Ash is replaced, the more fluidity of High Volume Fly-Ash Concrete decrease, because porous organization of Fly-Ash adsorb water and Superplasticizer. In this study, after appending additional water to High Volume Fly-Ash Concrete in proportion to weight of Fly-Ash, we intend to find proper ratio which doesn't affect strength and satisfy fluidity As a result of this study, it was found that fluidity of mortar with 25~28 percentage of additional water was satisfied with fluidity of plain mortar, and compressive strength of that was similar to plain mortar's

  • PDF

Development of high-performance cement grout for ground heat exchangers (지중열교환기용 고성능 시멘트 그라우트 개발)

  • Lee, Dong-Chul;Yang, Hee-Jung;Jeon, Joong-Kyu;Seo, Shin-Seok;Choi, Yong-Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • Performance of ground-source heat pumps (GSHPs) is mainly affected by ground heat exchangers which makes up more than 40% of construction cost. Exact construction and grout as backfill are important, because it is difficult to repair after being installed. As grout materials, bentonite grout material and cement material are used In this paper, thermal conductivity according to mix proportion of cement grout has been experimentally studied. Some variables were set to evaluate thermal conductivities according to change in cement content, unit water ratio, mass per volume of fresh mortar, and aggregate types. From the experimental analysis, high performance cement grout has been proposed.