• Title/Summary/Keyword: mitochondrial cytochrome c

Search Result 451, Processing Time 0.034 seconds

Inhibition of Glutamate-Induced Change in Mitochondrial Membrane Permeability in PC12 cells by 1-Methylated β-carbolines

  • Han, Eun-Sook;Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.11 no.2
    • /
    • pp.112-118
    • /
    • 2003
  • 1-Methylated $\beta$-carbolines (harmaline and harmalol) and antioxidants (N-acetylcysteine and ascorbate) reduced the loss of cell viability in differentiated PC 12 cells treated with 5 mM glutamate. $\beta$-Carbolines prevented the glutamate-induced decrease in mitochondrial membrane potential, cytochrome c release and caspase-3 activation in PC 12 cells. $\beta$-Carbolines reduced the formation of reactive oxygen species and depletion of glutathione due to glutamate in PC12 cells. $\beta$-Carbolines revealed a scavenging action on hydrogen peroxide and reduced the iron and EDTA-mediated degradation of 2-deoxy-D-ribose. The results suggest that I-methylated $\beta$-carbolines attenuate the cytotoxic effect of glutamate on PC12 cells by reducing the alteration of mitochondrial membrane permeability that seems to be mediated by oxidative stress.

Phylogenetic relationship of ribosomal ITS2 and mitochondrial COI among diploid and triploid Paragonimus westermani isolates

  • Park, Gab-Man;Im, Kyung-Il;Yong, Tai-Soon
    • Parasites, Hosts and Diseases
    • /
    • v.41 no.1
    • /
    • pp.47-55
    • /
    • 2003
  • We compared patterns of intraspecific polymorphism of two markers with contrasting modes of evolution, nuclear ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA), in the lung fluke, diploid and triploid Paragonimus westermani from three geographical regions of Korea. The genetic distances between three populations of Korean diploid and triploid P. westermani showed no significant difference in the nucleotide sequences of the mitochondrial cytochrome c oxidase subunit 1 (mtCOI) and ribosomaal second internal transcribed spacer (ITS2) genes. A highly resolved strict-consensus tree was obtained that illustrated phylogenetically useful information of the ITS2 and mtCOI sequences from diploid and triploid P. westermani.

Tributyltin Induces Apoptosis in R2C via Oxidative Stress and Caspase-3 Activation by Disturbance of $Ca^{2+}$

  • Lee, Kyung-Jin;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.3
    • /
    • pp.303-307
    • /
    • 2003
  • Tributyltin (TBT) used world-wide in antifouling paints toy ships is a wide-spread environmental pollutant. At low doses, antiproliferative modes of action have been shown to be involved, whereas at higher doses apoptosis seems to be the mechanism of toxicity in reproductive organs by TBT. In this study, we investigated that the mechanisms underlying apoptosis induced by TBT in R2C cell. Effects of TBT on intracellular $Ca^{2+}$ level and reactive oxygen species (ROS) were investigated in R2C cells by fluorescence detector. TBT significantly induced intracellular $Ca^{2+}$ level in a time-dependent manner. The rise in intracellular $Ca^{2+}$ level was followed by a time-dependent generation of reactive oxygen species (ROS) at the cytosol level. Simultaneously, TBT induced the release of cytochrome c from the mitochondrial membrane into the cytosol. Furthermore, ROS production and the release of cytochrome c were reduced by BAPTA, an intracellular $Ca^{2+}$ chelator, indicating the important role of $Ca^{2+}$ in R2C during these early intracellular events. In addition, Z-DEVD FMB, a caspase -3 inhibitor, decreased apoptosis by TBT. Taken together, the present results indicated that the apoptotic pathway by TBT might start with an increase in intracellular $Ca^{2+}$ level, continues with release of ROS and cytochrome c from mitochondria, activation of caspases, and finally results in DNA fragmentation.

Phylogenetic Relationships among Groupers (Genus Epinephelus) Based on Mitochondrial Cytochrome b DNA Sequences

  • KANG Geo Young;SONG Choon Bok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.5
    • /
    • pp.414-422
    • /
    • 2004
  • To infer phylogenetic relationships among Epinephelus species inhabiting coastal regions of Korean peninsula, mitochondrial cytochrome b genes from 9 species belonging to the subfamily Epinephelinae were PCR-amplified, cloned and sequenced. Aligned cytochrome b sequences of 10 species containing one additional sequence from GenBank were 1,140 base pairs in length, including 439 variable and 330 parsimony informative sites. The cytochrome b genes of 10 species, as other vertebrates studied to date, exhibit unequal base compositions: an entirely low G content ($15.2{\pm}0.3{\%}$on average) and almost equal T, C and A contents ($29.3{\pm}0.8{\%},\;30.7{\pm}1.0{\%},\;and\;24.8{\pm}0.5{\%}$ on average, respectively).In third codon positions, transitional substitutions especially between Epinephelus species and outgroup species are almost certainly saturated or near saturation. Phylogenetic analyses were performed with sequence data from 8 Epinephelus species and 2 outgroup species (Cephalopholis urodela and Vaviola louti) by using distance-based (neighbor-joining and minimum evolution) and parsimony-based (maximum parsimony) methods. The results showed that the monophyly of the genus Epinephelus was supported by relatively high bootstrap values. However, phylogenetic relationships among E. areolatus, E. moara, E. septemfasciatus, and Epinephelus sp were poorly resolved. Within the genus Epinephelus, three resolved monophyletic groups were found: clade 1 included E. akaara and E. awoara;, clade 2 included E. fasciatus and E. merra; and clade 3 included E. akaara, E. awoara, E. fasciatus, E. merra, E. areolatus, E. moara, E. septemfasciatus and Epinephelus Sp.

Effect of Depletion and Oxidation of Cellular GSH on Cytotoxicity of Mitomycin Small Cell Lung Cancer Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.92-100
    • /
    • 2004
  • Effect of the depletion or oxidation of GSH on mitomycin c (MMC)-induced mitochondrial damage and cell death was assessed in small cell lung cancer (SCLC) cells. MMC induced cell death and the decrease in the GSH contents in SCLC cells, which were inhibited by z-LEHD.fmk (a cell permeable inhibitor of caspase-9), z-DQMD.fmk (a cell permeable inhibitor of caspase-3) and thiol compound, N-acetylcysteine. MMC caused nuclear damage, release of cytochrome c and activation of caspase-3, which were reduced by N-acetylcysteine. The depletion of GSH due to L-butionine-sulfoximine enhanced the MMC-induced cell death and formation of reactive oxygen species in SCLC cells, whereas the oxidation of GSH due to diamide or $NH_2Cl$ did not affect cytotoxicity of MMC. The results show that MMC may cause cell death in SCLC cells by inducing mitochondrial dysfunction, leading to activation of caspase-9 and -3. The MMC-induced change in the mitochondrial membrane permeability, followed by cell death, in SCLC cells may be significantly enhanced by the depletion of GSH. In contrast, the oxidation of GSH may not affect cytotoxicity of MMC.

Effects of Psidium guajava Leaf Extract on Apoptosis Induction Through Mitochondrial Dysfunction in HepG2 Cells

  • Nguyen, Van-Tinh;Ko, Seok-Chun;Oh, Gun-Woo;Heo, Seong-Yeong;Jung, Won-Kyo
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.43-53
    • /
    • 2019
  • The anticancer activity of guava (Psidium guajava L.) leaf extract (GLE) occurs via the induction of apoptosis in cancer cells. However, the mechanism behind GLE-induced apoptosis in the human hepatocellular carcinoma cell line HepG2 remains unclear. In the present study, we investigated the apoptotic effects and mechanism of action of GLE in cultured HepG2 cells. The results showed that GLE induced reactive oxygen species (ROS) synthesis and disrupted the mitochondrial membrane potential (${\Delta}{\Psi}m$). Moreover, GLE increased the expression of apoptotic pathway proteins, such as the cleaved forms of caspase-3, -8, and -9; the translocation of Bax and cytochrome c (cyt-c) from the mitochondria to the cytosol; and the downregulation of Bcl-2. In addition, p53 protein expression was increased upon GLE treatment. These observations indicate that the GLE-induced apoptosis in HepG2 cells is mediated by mitochondrial ROS generation, followed by caspase activation and cyt-c release, suggesting that GLE may be a promising candidate for the development of novel drugs for the treatment of liver cancers.

Cell Cycle Arrest and Apoptotic Induction by MCS-C2 in Human Leukemia HL-60 Cells

  • Kim, Min-Kyoung;Lee, Chul-Hoon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.297-301
    • /
    • 2004
  • The purpose of the present study was to investigate the anti-proliferative and apoptotic effects of MCS-C2, a novel analogue of toyocamycin and sangivamycin, in human promyelocytic leukemia (HL-60) cells. When treated with MCS-C2, inhibited proliferation associated with cell cycle arrest and apoptotic induction was found in the HL-60 cells in a concentration-dependent and time-dependent manner. This apoptotic induction was associated with the cleavage of Bid and a release of cytochrome c from mitochondria into the cytosol, followed by the activation of caspase-3 and inactivation of poly (ADP-ribose) polymerase (PARP). However, there was no significant change in any other mitochondrial membrane proteins, such as Bcl-2 and Bax. Consequently, the current findings suggest that the mitochondrial pathway was primarily involved in the MCS-C2-induced apoptosis in the human promyelocytic leukemia HL-60 cells.

  • PDF

Curcumin Inhibits Human Non-small Cell Lung Cancer A549 Cell Proliferation Through Regulation of Bcl-2/Bax and Cytochrome C

  • Li, Yue;Zhang, Shuai;Geng, Jian-Xiong;Hu, Xiao-Yang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4599-4602
    • /
    • 2013
  • We intended to study the mechanism of the inhibitory action of curcumin on human non-small cell lung cancer A549 cell. The cell growth was determined by CCK-8 assay, and the results indicated that curcumin inhibited the cell proliferation in a concentration dependent manner. And to further confirm the relative anti-cancer mechanism of curcumin, RT-PCR was carried out to analysis the expression of relative apoptotic proteins Bax, Bcl-2. We found that curcumin could up-regulate the expression of Bax but down-regulate the expression of Bcl-2 in A549 cells. In addition, curcumin affect the mitochondrial apoptosis pathway. These results suggested that curcumin inhibited cancer cell growth through the regulation of Bcl-2/Bax and affect the mitochondrial apoptosis pathway.