Browse > Article
http://dx.doi.org/10.5657/kfas.2004.37.5.414

Phylogenetic Relationships among Groupers (Genus Epinephelus) Based on Mitochondrial Cytochrome b DNA Sequences  

KANG Geo Young (Department of Marine Biotechnology, College of Ocean Science, Cheju National University)
SONG Choon Bok (Department of Marine Biotechnology, College of Ocean Science, Cheju National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.37, no.5, 2004 , pp. 414-422 More about this Journal
Abstract
To infer phylogenetic relationships among Epinephelus species inhabiting coastal regions of Korean peninsula, mitochondrial cytochrome b genes from 9 species belonging to the subfamily Epinephelinae were PCR-amplified, cloned and sequenced. Aligned cytochrome b sequences of 10 species containing one additional sequence from GenBank were 1,140 base pairs in length, including 439 variable and 330 parsimony informative sites. The cytochrome b genes of 10 species, as other vertebrates studied to date, exhibit unequal base compositions: an entirely low G content ($15.2{\pm}0.3{\%}$on average) and almost equal T, C and A contents ($29.3{\pm}0.8{\%},\;30.7{\pm}1.0{\%},\;and\;24.8{\pm}0.5{\%}$ on average, respectively).In third codon positions, transitional substitutions especially between Epinephelus species and outgroup species are almost certainly saturated or near saturation. Phylogenetic analyses were performed with sequence data from 8 Epinephelus species and 2 outgroup species (Cephalopholis urodela and Vaviola louti) by using distance-based (neighbor-joining and minimum evolution) and parsimony-based (maximum parsimony) methods. The results showed that the monophyly of the genus Epinephelus was supported by relatively high bootstrap values. However, phylogenetic relationships among E. areolatus, E. moara, E. septemfasciatus, and Epinephelus sp were poorly resolved. Within the genus Epinephelus, three resolved monophyletic groups were found: clade 1 included E. akaara and E. awoara;, clade 2 included E. fasciatus and E. merra; and clade 3 included E. akaara, E. awoara, E. fasciatus, E. merra, E. areolatus, E. moara, E. septemfasciatus and Epinephelus Sp.
Keywords
Phylogenetic relationships; Groupers; Epinephelus; Cytochrome b DNA sequence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Heemstra, P.C. and J.E. Randall. 1993. Groupers of the world (Family Serranidae, Subfamily Epinephelinae). FAO Fisheries Synopsis, No. 125, Vol. 16, Rome, FAO, pp. 382
2 Irwin, D.M., T.D. Kocher and A.C. Wilson. 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol., 32, 128-144   DOI
3 Allegrucci, G., A. Caccone and V. Sbordoni. 1999. Cytochrome b sequence divergence in the European sea bass (Dicentrarchus labrax) and phylogenetic relationships among some Perciformes species. J. ZooI. Syst. Evol. Res., 37, 149-156
4 Anderson, S., A.T. Bankier, B.G. Barrell, M.H.L. de Bruijn, A.R. Coulson, J. Drouin, I.C. Eperon, D.P. Nierlich, B.A. Roe, F. Sanger, P.H. Schreier, A.J.H. Smith, R. Staden and I. G. Young. 1981. Sequence and organization of the human mitochondrial genome. Nature, 290, 457-465   DOI   ScienceOn
5 Baldwin, C.C. and G.D. Johnson. 1993. Phylogeny of the Epinephelinae (Teleostei: Serranidae). Bull. Mar. Sci., 52(1), 240-283
6 Song, C.B., T.J. Near and L.M. Page. 1998. Phylogenetic relations among percid fishes as inferred from mitochondrial cytochrome b DNA sequence data. Mol. Phylogenet. Evol., 10(3), 343-353   DOI   ScienceOn
7 Nei, M. and S. Kumar. 2000. Molecular Evolution and Phylogenetics, Oxford University Press. New York, pp. 333
8 Nugroho, E., M. Takagi, K. Sugama and N. Taniguchi. 1998. Detection of GT repeats microsatellite loci and their polymorphism for grouper of the genus Epinephelus. Fish. Sci., 64(5), 836-837   DOI
9 Patterton, H.G. and S. Graves. 2000. DNAssist: the integrated editing and analysis of molecular biology sequences in windows. Bioinformatics, 16(7), 652-653   DOI   ScienceOn
10 Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. BioI. Evol., 4(4), 406-425
11 Swofford, D.L. 1998. PAUP: Phylogenetic analysis using parsimony, version 4, Sinauer Associates, Sunderland, MA
12 Takezaki, N. and T. Gojobori. 1999. Correct and incorrect vertebrate phylogenies obtained by the entire mitochondrial DNA sequences. Mol. Biol. Evol., 16(5), 590-601   DOI   ScienceOn
13 Tamura, K. and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol., 10(3), 512-526
14 Tave, D. 1986. Genetics for Fish Hatchery Managers. AVI Pub. Company, Inc. Wearport, Connecticut, pp. 299
15 Kendall, A.W., Jr. 1984. Serranidae: development and relationships. pp. 499-510. In: Ontogeny and Systematics of Fishes, Based on an International Symposium Dedicated to the Memory of Elbert Halvor Ahlstrom, H.G. Moser, W.J. Richards, D.M. Cohen, M.P. Fahay, A.W. Kendall, Jr., and S.L. Richardson, eds. The symposium was held August 15-18, 1983 at La Jolla, California. Amer. Soc. Ichthyol. Herpetol., Special Pub., No.1, pp. 760
16 Johns, G.C. and J.C. Avise. 1998. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol. BioI. Evol., 15(11), 1481-1490   DOI   ScienceOn
17 Johnson, G.D. 1983. Niphon spinosus: a primitive epinepheline serranid, with comments on the monophyly and interrelationships of the Serranidae. Copeia, 1983(3), 777-787   DOI   ScienceOn
18 Johnson, G.D. 1988. Niphon spinosus: a primitive epinepheline serranid: corroborative evidence from the larvae. Jap. J. Ichthyol., 35(1), 7-18
19 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16, 111-120   DOI
20 Kumar, S., K. Tamura, I.B. Jakobsen and M. Nei. 2001. MEGA2: Molecular evolutionary genetics analysis software, Bioinformatics, 17(12), 1244-1245   DOI   ScienceOn
21 Leis, J.M. 1986. Larval development in four species of Indo-Pacific coral trout Plectropomus (Pisces: Serranidae: Epinephelinae) with an analysis of the relationships of the genus. Bull. Mar. Sci., 38(3), 525-552
22 Meyer, A. 1993. Evolution of mitochondrial DNA in fishes. pp. 1-38. In: Molecular Biology Frontiers, Biochemistry and Molecular Biology of Fishes, vol. 2, Hochachka, P.W. and T.P. Mommsen, eds. Elsevier Science Publishers. AM., pp. 470
23 Cantatore, P., M. Roverti, G. Pesole, A. Ludovico, F. Milella, M.N. Gadaleta and C. Saccone. 1994. Evolutionary analysis of cytochrome b sequences in some perciformes: evidence for a slower rate of evolution than in mammals. J. Mol. Evol., 39, 589-597   DOI   ScienceOn
24 Morris, A.V., C.M. Roberts and J.P. Hawkins. 2000. The threatened status of groupers (Epinephelinae). Biodiver. Conserv., 9, 919-942   DOI   ScienceOn
25 Briolay, J., N. Galtier, R.M. Brito and Y. Bouvet. 1998. Molecular phylogeny of Cyprinidae inferred from cytochrome b DNA sequences. Mol. Phylogenet. Evol., 9(1), 100-108   DOI   ScienceOn
26 Brito, R.M., J. Briolay, N. Galtier, Y. Bouvet and M.M. Coelho. 1997. Phylogenetic relationships within genus Leuciscus (Pisces, Cyprinidae) in Portuguese fresh waters, based on mitochondrial DNA cytochrome b sequences. Mol. Phylogenet. Evol., 8(3), 435-442   DOI   ScienceOn
27 Chyung, M.K. 1977. The Fishes of Korea, Iljisa Pub. Co., Seoul, pp. 727
28 Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783-791   DOI   ScienceOn
29 Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool., 20, 406-416   DOI   ScienceOn
30 Gosline, W.A. 1966. The limits of the fish family Serranidae, with notes on other lower percoids. Proc. Calif. Acad. Sci., 33(6), 91-112
31 Griffiths, C.S. 1997. Correlation of functional domains and rates of nucleotide substitution in cytochrome b. Mol. Phylogenet. Evol., 7(3), 352-365   DOI   ScienceOn