• Title/Summary/Keyword: mitochondrial DNA mutation

Search Result 43, Processing Time 0.031 seconds

Genetic Characterization based on a rDNA Spacer, ITS2 and mtDNA, mtCOI Gene Sequences of Korean Venus Clam, Ruditapes philippinarum

  • Park, Gab-Man;Chung, Ee-Yung;Hur, Sung-Bum
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.497-498
    • /
    • 2000
  • The venus clam, Ruditapes philippinarum, is an aquaculture shellfish mainly distributed in an intertidal zone of East Asia including Korea, China and Japan. The morphological variation of this species is great. In fact, two of the most popular markers used in molecular evolution, mitochondrial DNA (mtDNA) and nuclear ribosomal DNA (rDNA), have quite different properties, which could translate into different consequences of mutation, drift, migration and selection on patterns of geographical variation and molecular divergence. (omitted)

  • PDF

Mitochondrial genome mutations in mesenchymal stem cells derived from human dental induced pluripotent stem cells

  • Park, Jumi;Lee, Yeonmi;Shin, Joosung;Lee, Hyeon-Jeong;Son, Young-Bum;Park, Bong-Wook;Kim, Deokhoon;Rho, Gyu-Jin;Kang, Eunju
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.689-694
    • /
    • 2019
  • Ethical and safety issues have rendered mesenchymal stem cells (MSCs) popular candidates in regenerative medicine, but their therapeutic capacity is lower than that of induced pluripotent stem cells (iPSCs). This study compared original, dental tissue-derived MSCs with re-differentiated MSCs from iPSCs (iPS-MSCs). CD marker expression in iPS-MSCs was similar to original MSCs. iPS-MSCs expressed higher in pluripotent genes, but lower levels in mesodermal genes than MSCs. In addition, iPS-MSCs did not form teratomas. All iPSCs carried mtDNA mutations; some shared with original MSCs and others not previously detected therein. Shared mutations were synonymous, while novel mutations were non-synonymous or located on RNA-encoding genes. iPS-MSCs also harbored mtDNA mutations transmitted from iPSCs. Selected iPS-MSCs displayed lower mitochondrial respiration than original MSCs. In conclusion, screening for mtDNA mutations in iPSC lines for iPS-MSCs can identify mutation-free cell lines for therapeutic applications.

Twenty-one-year follow-up of variable onset MELAS syndrome with heteroplasmic nt3243A>G mtDNA mutation: A case report

  • Song, Wung Joo;Lee, Yoon Jin;Kang, Joon Won;Chang, Mea Young;Song, Kyu Sang;Kang, Dae Young;Kim, Sook Za
    • Journal of Genetic Medicine
    • /
    • v.16 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a maternally inherited mitochondrial disorder of which m.3243A>G is the most commonly associated mutation, resulting in an inability to meet the energy requirements of various organs. MELAS poses a diagnostic challenge owing to its multiple organ involvement and great clinical variability due to its heteroplasmic nature. We report three cases from a family who were initially misdiagnosed with myasthenia gravis or undiagnosed. Although there is no optimal consensus treatment approach for patients with MELAS because of the disease's heterogeneity, our 21-year-long therapy regimen of ${\text\tiny{L}}-arginine$, ${\text\tiny{L}}-carnitine$, and coenzyme Q10 supplementation combined with dietary management appeared to provide noticeable protection from the symptoms and complications. Prompt early diagnosis is important, as optimal multidisciplinary management and early intervention may improve outcomes.

Ethanolic extract of Condurango (Marsdenia condurango) used in traditional systems of medicine including homeopathy against cancer can induce DNA damage and apoptosis in non small lung cancer cells, A549 and H522, in vitro

  • Sikdar, Sourav;Mukherjee, Avinaba;Boujedaini, Naoual;Khuda-Bukhsh, Anisur Rahman
    • CELLMED
    • /
    • v.3 no.1
    • /
    • pp.9.1-9.10
    • /
    • 2013
  • In traditional systems of medicine including homeopathy, the Condurango extract (Con) is often used to cure stomach cancer mainly, without having any scientific validation of its anti-cancer ability. Con has therefore been tested against non-small-cell lung cancer cells (NSCLC) A549 and NCI-H522 (H522) known to contain the KRAS mutation, making them resistant to most chemotherapeutic agents. As cancer cells generally defy cytotoxicity developed by chemopreventive agents and escape cell death, any drug showing the capability of preferentially killing cancer cells through apoptosis is worth consideration for judicious application. A549 and H522 cells were exposed to $0.35{\mu}g/{\mu}l$ and $0.25{\mu}g/{\mu}l$ of Con, respectively, for 48 h and analysed based on various protocols associated with apoptosis and DNA damage, such as MTT assay to determine cell viability, LDH assay, DNA fragmentation assay, comet assay, and microscopical examinations of DNA binding fluorescence stains like DAPI, Hoechst 33258 and acridine orange/ethidium bromide to determine the extent of DNA damage made in drug-treated and untreated cells and the results compared. Changes in mitochondrial membrane potential and the generation of reactive oxygen species were also documented through standard techniques. Con killed almost 50% of the cancer cells but spared normal cells significantly. Fluorescence studies revealed increased DNA nick formation and depolarized membrane potentials after drug treatment in both cell types. Caspase-3 expression levels confirmed the apoptosis-inducing potential of Con in both the NSCLC lines. Thus, overall results suggest considerable anticancer potential of Con against NSCLC in vitro, validating its use against lung cancer by practitioners of traditional medicine including homeopathy.

Accumulation of mtDNA Deletion (${\Delta}mtDNA^{4977}$) showing Tissue-Specific and Age-Related Variation (조직별 및 나이에 따른 마이토콘드리아 DNA 결손 (${\Delta}mtDNA^{4977}$)의 축적)

  • Jeong, Hye-Jin;Chung, Hyung-Min;Cho, Sung-Won;Kim, Hyun-Ah;Lee, Kyung-Sool;Kwon, Hwang;Choi, Dong-Hee;Kwak, In-Pyung;Yoon, Tae-Ki;Lee, Sook-Hwan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.3
    • /
    • pp.203-206
    • /
    • 2003
  • Objectives: Controversial arguments exists on both the case for and against on the accumulation of mitochondrial DNA (mtDNA) deletion in association to tissue and age. The debate continues as to whether this mutation is a major contributor to the phenotypic expression of aging and common degenerative diseases or simply a clinical insignificant epiphenomenon. The objective of this study was to determine whether the accumulation of mtDNA deletion is correlated with age-related and tissue-specific variation. Materials and Methods: One hundred and fifty-seven tissues from blood, ovary, uterine muscle, and abdominal muscle were obtained from patients ranging in age from 31$\sim$60 years. After reviewing the clinical reports, patients with mitochondrial disorder were excluded from this study. The tissues were obtained at gynecological surgeries with the consent of the patient. Total DNA isolated from blood, ovary, uterine muscle, and abdominal muscle was amplified by two rounds of PCR using two pairs of primers corresponding to positions 8225-8247 (sense), 13551-13574 (antisense) for the area around deleted mtDNA and 8421-8440 (sense), 13520-13501 (antisense) for nested PCR product. A statistical analysis was performed by $x^2$-test. Results: About 0% of blood, 94.8% of ovary, 71.4% of uterine muscle, and 86.1% abdominal muscle harbored mtDNA deletion. When we examined the proportion of deleted mtDNA according to age deletion rate was 90% of ovary, 63.6% of uterine muscle, 77.7% of abdominal muscle in thirties and 100% of all tissue in fifties. Conclusion: The findings of this study suggest that the mtDNA deletion is varied in tissue-specific pattern and increases with aging.

The First Case of Korean Boy with Mitochondrial Trifunctional Protein Deficiency Diagnosed by Acylcarnitine Profiles and DNA analysis : A Novel Mutation in the α-subunit of the Mitochondrial Trifunctional Protein and a Unusual Intergenic Sequence with Two Polymorphisms

  • Lee, Ji-Eun;Yoon, Hye-Ran;Paik, Kyung Hoon;Hwang, Jong Hee;Hwang, Soo-Jung;Shim, Jae-Won;Chang, Yun-Sil;Park, Won-Soon;Strauss, Arnold W.;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.2 no.1
    • /
    • pp.12-14
    • /
    • 2002
  • PDF

Dysfunctional pancreatic cells differentiated from induced pluripotent stem cells with mitochondrial DNA mutations

  • So, Seongjun;Lee, Song;Lee, Yeonmi;Han, Jongsuk;Kang, Soonsuk;Choi, Jiwan;Kim, Bitnara;Kim, Deokhoon;Yoo, Hyun-Ju;Shim, In-Kyong;Oh, Ju-Yun;Lee, Yu-Na;Kim, Song-Cheol;Kang, Eunju
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.453-458
    • /
    • 2022
  • Diabetes mellitus (DM) is a serious disease in which blood sugar levels rise abnormally because of failed insulin production or decreased insulin sensitivity. Although many studies are being conducted for the treatment or early diagnosis of DM, it is not fully understood how mitochondrial genome (mtDNA) abnormalities appear in patients with DM. Here, we induced iPSCs from fibroblasts, PBMCs, or pancreatic cells of three patients with type 2 DM (T2D) and three patients with non-diabetes counterpart. The mtDNA mutations were detected randomly without any tendency among tissues or patients. In T2D patients, 62% (21/34) of iPSC clones harbored multiple mtDNA mutations, of which 37% were homoplasmy at the 100% mutation level compared to only 8% in non-diabetes. We next selected iPSC clones that were a wild type or carried mutations and differentiated into pancreatic cells. Oxygen consumption rates were significantly lower in cells carrying mutant mtDNA. Additionally, the mutant cells exhibited decreased production of insulin and reduced secretion of insulin in response to glucose. Overall, the results suggest that screening mtDNA mutations in iPSCs from patients with T2D is an essential step before pancreatic cell differentiation for disease modeling or autologous cell therapy.

Phylogenetic Characterization of White Hanwoo Using the Mitochondrial Cytochrome b Gene (mtDNA cytochrome b 분석을 통한 백한우의 계통유전학적 특성 분석)

  • Kim, Jae-Hwan;Cho, ChangYeon;Kim, SeungChang;Kim, Sung Woo;Choi, Seong-Bok;Lee, Seong-Su
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.970-975
    • /
    • 2015
  • The goals of this study were to identify sequence variations in the mitochondrial cytochrome b (mtDNA cyt b) gene in White Hanwoo (Wh) and the genetic relationship between the Wh and other breeds. When whole sequences of the mtDNA cyt b gene in 14 Wh cattle were determined, a silent mutation and two haplotypes were detected in the Wh cattle. The major haplotype, H1, was found in 13 of 14 individuals in the Wh cattle. Haplotype diversity and nucleotide diversity were 0.143 and 0.00013, respectively. Compared to previous reports, these levels of genetic diversity are lower than other Korean and Chinese breeds. To identify the genetic relationship among Korean, Chinese, Japanese, and European cattle breeds, the neighbor-joining (NJ) tree was constructed based on Dxy genetic distances. Two distinct groups were identified and classified as A and B. Wh was found in the A group, which consisted of Bos taurus breeds. From calculating the Dxy genetic distances, Wh was found to be genetically more closely related to two breeds, Heugu (0.00018) and Yanbian (0.00021), than to other breeds. In conclusion, Wh is genetically related to Chikso, Heugu, and Yanbian breeds based on maternal inheritance. The results of this study will be useful for efficient management and sustainable utilization of Wh.

Complete mitochondrial genome of Nyctalus aviator and phylogenetic analysis of the family Vespertilionidae

  • Lee, Seon-Mi;Lee, Mu-Yeong;Kim, Sun-sook;Kim, Hee-Jong;Jeon, Hye Sook;An, Junghwa
    • Journal of Species Research
    • /
    • v.8 no.3
    • /
    • pp.313-317
    • /
    • 2019
  • Bats influence overall ecosystem health by regulating species diversity and being a major source of zoonotic viruses. Hence, there is a need to elucidate their migration, population structure, and phylogenetic relationship. The complete mitochondrial genome is widely used for studying the genome-level characteristics and phylogenetic relationship of various animals due to its high mutation rate, simple structure, and maternal inheritance. In this study, we determined the complete mitogenome sequence of the bird-like noctule (Nyctalus aviator) by Illumina next-generation sequencing. The sequences obtained were used to reconstruct a phylogenic tree of Vespertilionidae to elucidate the phylogenetic relationship among its members. The mitogenome of N. aviator is 16,863-bp long with a typical vertebrate gene arrangement, consisting of 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 putative control region. Overall, the nucleotide composition is as follows: 32.3% A, 24.2% C, 14.3% G, and 29.2% T, with a slight AT bias (61.5%). The base composition of the 13 PCGs is as follows: 30.3% A, 13.4% G, 31.0% T, and 25.2% C. The phylogenetic analysis, based on 13 concatenated PCG sequences, infers that N. aviator is closely related to N. noctula with a high bootstrap value (100%).

Two Cases of MELAS Syndrome Manifesting Variable Clinical Cour (다양한 임상경과를 보인 멜라스(MELAS, mitochondrial encephalopathy, lactic acidosis, and stroke-like episode) 증후군 2례)

  • Choi, Seo Yeol;Lee, Seung-Ho;Myung, Na-Hye;Lee, Young-Seok;Yu, Jeesuk
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.2
    • /
    • pp.102-108
    • /
    • 2016
  • Mitochondrial encephalopathy, lactic acidosis, and stroke-like episode (MELAS) syndrome is one of mitochondrial encephalopathy. As the early clinical manifestations can be variable, it is important to suspect the disease, especially in patients with multiple organ dysfunctions. A boy was diagnosed with epilepsy when he was 9 years old. Two years later, severe headache and blurred vision developed suddenly. On examination, left homonymous hemianopsia was detected with corresponding cerebral parenchymal lesions in right temporo-occipito-parietal areas. MELAS syndrome was confirmed by genetic test, which showed m.3243 A>G mitochondrial DNA mutation. Multivitamins including coenzyme Q10 were added to anticonvulsant. He experienced 4 more events of stroke-like episodes over 5 years, but he is able to perform normal daily activities. A 13-year-old boy was brought to the hospital due to suddenly developed respiratory arrest and asystole associated with pneumonia. Past medical history revealed that he had multiple medical problems such as epilepsy, failure-to-thrive, optic atrophy, and deafness. He has been on valproic acid as an anticonvulsant which was prescribed from local clinic. He recovered after the resuscitation, but his cognition and motor function were severely damaged. He became bed-ridden. He was diagnosed with MELAS syndrome by brain MRI, muscle biopsy, and clinical features. Genetic test did not reveal any mitochondrial gene mutation. Four years later, he expired due to suddenly developed severe metabolic acidosis combined with hyperglycemic hyperosmolar nonketotic coma. The clinical features of MELAS syndrome are variable. Early diagnosis before the presentation to the grave clinical course may be important for the better clinical outcome.

  • PDF