• Title/Summary/Keyword: mitochondrial COI gene

Search Result 116, Processing Time 0.025 seconds

Genetic Homogeneity of the Korean Native Bumble Bee, Bombus ardens (Hymenoptera: Apidae), Detected by Mitochondrial COI Gene Sequences

  • Yoon, Hyung-Joo;Kim, Sam-Eun;Lee, Myeong-Lyeol;Kim, Iksoo;Bae, Jin-Sik;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.1
    • /
    • pp.63-68
    • /
    • 2003
  • We investigated the sequence divergence of the geographic samples of the queen bumble bee (Bombus ardens) in Korea. A portion of mitochondrial COI gene sequences (423 bp) was analyzed for 44 individuals collected from seven localities. Sequence analysis resulted in four COI haplotypes with the maximum nucleotide divergence of only 0.5% (two bp). One haplotype (BA1) was dominant in all localities surveyed (86.4%). The finding of low sequence divergence and dominance of one haplotype appear to reflect, although limited, the life history of the B. ardens queens subjected to active dispersal and seasonal fluctuation in queen number.

A Newly Recorded Sea Star of the Genus Luidia (Asteroidea: Paxillosida: Luidiidae) from the Korea Strait, Korea

  • Kim, Donghwan;Kim, Minkyung;Shin, Sook
    • Animal Systematics, Evolution and Diversity
    • /
    • v.33 no.2
    • /
    • pp.131-135
    • /
    • 2017
  • Asteroid specimens of the genus Luidia were collected at a depth of 95-100 m in the Korea Strait by bottom trawling in April 2016. The specimens were identified as Luidia avicularia Fisher, 1913 (Luidiidae: Paxillosida) based on morphological characteristics and molecular phylogenetic analyses, and the species is new to the Korean fauna. A 648-bp partial nucleotide sequence of mitochondrial cytochrome c oxidase I (mt-COI) gene was obtained from Korea, and then was compared to sequences of related species stored in GenBank using molecular phylogenetic analyses. No sequence differences were detected between the L. avicularia mt-COI gene sequences from Korea and China, and the species described in this report was clearly distinct from L. maculata, which was previously reported in Korean fauna. Three Luidia species have been reported in Korea.

Classification in Different Genera by Cytochrome Oxidase Subunit I Gene Using CNN-LSTM Hybrid Model

  • Meijing Li;Dongkeun Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.159-166
    • /
    • 2023
  • The COI gene is a sequence of approximately 650 bp at the 5' terminal of the mitochondrial Cytochrome c Oxidase subunit I (COI) gene. As an effective DeoxyriboNucleic Acid (DNA) barcode, it is widely used for the taxonomic identification and evolutionary analysis of species. We created a CNN-LSTM hybrid model by combining the gene features partially extracted by the Long Short-Term Memory ( LSTM ) network with the feature maps obtained by the CNN. Compared to K-Means Clustering, Support Vector Machines (SVM), and a single CNN classification model, after training 278 samples in a training set that included 15 genera from two orders, the CNN-LSTM hybrid model achieved 94% accuracy in the test set, which contained 118 samples. We augmented the training set samples and four genera into four orders, and the classification accuracy of the test set reached 100%. This study also proposes calculating the cosine similarity between the training and test sets to initially assess the reliability of the predicted results and discover new species.

Additional mitochondrial DNA sequences from the dragonfly, Nannophya pygmaea (Odonata: Libellulidae), which is endangered in South Korea

  • Wang, Ah Rha;Kim, Min Jee;Kim, Sung Soo;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.1
    • /
    • pp.51-57
    • /
    • 2017
  • The tiny dragonfly, Nannophya pygmaea (Odonata: Libellulidae), is an endangered insect in South Korea. Previously, a partial mitochondrial DNA sequence that corresponded to a DNA barcoding region has been used to infer genetic diversity and gene flow. In this study, we additionally sequenced the barcoding region from N. pygmaea that had been collected from three previously sampled populations (40 individuals) and these sequences were combined with the preexisting data. We also selected and sequenced an additional mitochondrial gene (ND5) to find further variable gene regions in the mitochondrial genome. DNA barcoding sequences of 108 individuals from five South Korean localities showed that genetic diversity was highest in Gangjin, Jeollanam-do Province. Muuido, which was previously occupied by a single haplotype, was also found to have an identical haplotype, which confirmed the low genetic diversity on this islet. Gene flow among populations is highly limited, and no clear distance- or region-based geographic partitioning was observed. Phylogenetic relationships among haplotypes showed that there were no discernable haplotypes in South Korea. ND5 provided slightly more haplotypes compared to the barcoding region in 40 individuals (14 vs. 10 haplotypes in the COI gene). It also had a slightly higher within-locality diversity estimate, which suggested that ND5 had potential as mitochondrial DNA-based marker for population genetic analysis.

Genetic Structure and Phylogenetic Relationship of Red Spotted Grouper (Epinephelus akaara) Based on the Haplotypes and Polymorphisms of Mitochondrial COI Gene Sequences (미토콘드리아 COI 유전자 서열의 다형성과 반수체형에 근거한 한국산 붉바리(Epinephelus akaara)의 유전적 구조와 계통 유연관계)

  • Han, Sang-Hyun;Lee, Young-Don;Baek, Hae-Ja;Oh, Hong-Shik;Noh, Choong Hwan
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.626-632
    • /
    • 2014
  • The genetic structure and phylogenetic relationship were investigated in Korean red spotted grouper populations using the nucleotide sequence polymorphisms of the mitochondrial DNA (mtDNA) cytochrome c oxidase subunit I (COI) gene. The COI gene was sequenced showed 99.1-99.8% identity with the EF607565 sequence previously reported. A total of twenty haplotypes were found, and the Korean population showed nineteen haplotypes. Among those, Hap_03 and Hap_08 showed Jeju-do and China-specific COI sequences, respectively. However, Hap_07 had twelve COI sequences from South Korea and records from Hong Kong and Taiwan. Neighbor-joining (NJ) trees constructed from the phylogenetic analyses based on the polymorphisms of the COI haplotypes showed a monophyletic branching pattern within the genus Epinephelus. This indicated that the red spotted grouper populations had evolved from common maternal ancestors. In addition, the Hap_08, which had the COI sequence recorded only from China Sea, was found in the middle of the NJ tree nearby Hap_07 and showed a close relationship with Hap_07. This indicates that Chinese red spotted grouper is also maternally related to other populations in East Asia. Consequently, East Asian red spotted grouper populations are maternally related, as well as sharing the same evolutionary history, and are still affected by the East Asian ocean current (Kuroshio). These findings help to explain the genetic structure and phylogenetic relationship of red spotted grouper and also contribute to research on artificial breeding and industrialization.

Molecular epidemiological characterization of poultry red mite (Dermanyssus gallinae) collected from Korea

  • Oh, Sang-Ik;Noh, Guntai;Yi, Seung Won;Do, Yoon Jung;Kim, Eunju;Yoo, Jae Gyu
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.3
    • /
    • pp.161-167
    • /
    • 2019
  • The poultry red mite (PRM), Dermanyssus gallinae, causes great economic losses to poultry industries in Korea. The molecular epidemiological characterization of PRM has been investigated in some countries, but those analysis has been not conducted yet in Korea. The aim of this study is to determine the genetic diversity of PRMs in Korea compared with those from other countries. Here, 13 PRM samples collected from Korea were analyzed with a part of the mitochondrial cytochrome oxidase subunit I (COI) gene and nuclear internal transcribed spacers (ITS) region. All the samples showed an identical COI sequence, which has also been reported in European countries and Japan. Phylogenetic diversity analysis showed that the mites from Korea were genetically related to those in other countries. The nuclear ITS region sequences were classified into three sequence types. Additionally, one of the ITS sequences was an intermediate type, implying that a hybridization event occurred among the mite populations in Korea. These findings suggested PRMs from Korea showed low genetic diversity with respect to mitochondrial COI gene, but three different populations inhabited in Korea with respect to nuclear ITS region sequences.

Genomic Structure of the Luciferase Gene and Phylogenetic Analysis of the Firefly, Pyrocoelia rufa

  • Jianhong Li;Park, Yong-Soo;Zhao Feng;Kim, Iksoo;Lee, Sang-Mong;Kim, Jong-Gill;Kim, Keun-Young;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.181-189
    • /
    • 2003
  • We describe here the complete nucleotide sequence and the exon-intron structure of the luciferase gene of the firefly, Pyrocoelia rufa. The luciferase gene of the P. rufa firefly consisted of six introns and seven exons coding for 548 amino acid residues. From the translational start site to the end of last exon, however, the genomic DNA length of the P. rufa luciferase gene from the Korean and Chinese samples spans 1,968 bp and 1983 bp, respectively, and 3 amino acid residues were different to each other. Additionally, we also analyzed mitochondrial cytochrome oxidase I(COI) gene of the Chinese P. rufa fireflies. Analysis of DNA sequences from the mitochondrial COI protein-coding gene revealed 4 mitochondrial DNA sequence-based haplotypes with a maximum divergence of 0.7%. With the 20 P. rufa haplotypes found in Korea, phylogenetic analyses using PAUP and PHYLIP subdivided the P. rufa into three clades, termed clades A and B for the Korean sample, and clade C for the Chinese sample.

A Taxonomic Study on Perinereis nuntia Species Group (Polychaeta: Nereididae) of Korea

  • Park, Tae-Seo;Kim, Won
    • Animal Systematics, Evolution and Diversity
    • /
    • v.23 no.1
    • /
    • pp.75-85
    • /
    • 2007
  • A taxonomic study was carried out on the Perinereis nuntia species group of Korea by using morphological and molecular data (mitochondrial cytochrome c oxidase subunit I: mtCOI). Two species, P. mictodonta (Marenzeller, 1879) and P. wilsoni (Glasby and Hsieh, 2006), are recognized and redescribed. In this study, mtCOI gene showed a good resolution as molecular marker for species identification of the P. nuntia species group of Korea.

Development and Validation of Quick and Accurate Cephalopods Grouping System in Fishery Products by Real-time Quantitative PCR Based on Mitochondrial DNA (두족류의 진위 판별을 위한 Real-time Quantitative PCR 검사법 개발 및 검증)

  • Chung, In Young;Seo, Yong Bae;Yang, Ji Young;Kwon, Ki sung;Kim, Gun Do
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.280-288
    • /
    • 2018
  • In this study, an approach for the analysis of the five cephalopod species (octopus, long-arm octopus, squid, wet-foot octopus, beka squid) consumed in the Republic of Korea is developed. The samples were collected from the Southeast Asian countries Thailand, Indonesia, Vietnam, and China. The SYBR-green-based real-time qPCR method, based on the mitochondrial DNA genome of the five cephalopods was developed and validated. The intergroup variations in the mitochondrial DNA are evident in the bioinformatic analysis of the mitochondrial genomic DNA sequences of the five groups. Some of the highly-conserved and slightly-variated regions are identified in the mitochondrial cytochrome-c-oxidase subunit I (COI) gene, 16s ribosomal RNA (16s rRNA) gene, and 12s ribosomal RNA (12s rRNA) gene of these groups. To specify each five cephalopod groups, specific primer sets were designed from the COI, 16s rRNA and 12s rRNA regions. The specific primer sets amplified the DNA using the SYBR-green-based real-time PCR system and 11 commercially secured animal tissues: Octopus vulgaris, Octopus minor, Todarodes pacificus, Dosidicus gigas, Sepia esculenta, Amphioctopus fangsiao, Amphioctopus aegina, Amphioctopus marginatus, Loliolus beka, Loligo edulis, and Loligo chinensis. The results confirmed by a conveient way to calculate relative amplification levels between different samples in that it directly uses the threshold cycles (Ct)-value range generated by the qPCR system from these samples. This genomic DNA-based molecular technique provides a quick, accurate, and reliable method for the taxonomic classification of the animal tissues using the real-time qPCR.

Evolution of sea Urchin Strongylocentrotus intermedius Based on DNA Sequences of a Mitochondrial Gene, Cytochrome c Oxidase Subunit I (미토콘드리아 유전자, 치토그롬 옥시다제(subunit I)의 염기서열을 이용한 새치성게(Strongylocentrotus intermedius)의 진화과정 분석)

  • Lee, Youn-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.157-168
    • /
    • 2000
  • Sea urchin S. intermedius occurring in the Korean east coast is a cold water species that belongs to the family Strongylocentrotidae of Echinoidea. Although it is known that there are nine species in the family, species identification criteria, phylogenetic relationships, time and process of evolution of the family members have not been uncovered clearly. In the present study, I tried to find some clues to such problems for S. intermedius by means of DNA sequences. For this, cytochrome c oxidase subunit I (COI), one of the mitochondrial genes that evolve fast and follow maternal inheritance was analyzed. DNA was extracted from the female gonad of S. intermedius, a segment of COI gene amplified by polymerase chain reaction (PCR), and finally a total of 1077 base pair sequence of COI obtained by cloning and sequencing the PCR product. The sequence was compared with homologous genes of other sea urchins and echinoderm species. Phylogenetic trees of the COI gene segment revealed that S. intenedius is a sister species of S. purpuratus which lives along the east coast of the Paciflc. With reference to the fossil records of sea urchins and genetic distances in the molecular phylogenies, it is estimated that the two species were separated about 0.89 million years ago when the earth temperature fluctuated significantly. The current disjunct distribution patterns of the two species and the climate change of the earth at the time of separation suggest that speciation might have occurred by vicariance. The COI gene sequence obtained here now can be used as a molecular character which discerns S. intermedius from the other sea urchin species of Strongylocentrotidae.

  • PDF