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Abstract

The COI gene is a sequence of approximately 650 bp at the 5' terminal of the mitochondrial Cytochrome ¢ Oxidase subunit I
(COI) gene. As an effective DeoxyriboNucleic Acid (DNA) barcode, it is widely used for the taxonomic identification and
evolutionary analysis of species. We created a CNN-LSTM hybrid model by combining the gene features partially extracted by
the Long Short-Term Memory ( LSTM ) network with the feature maps obtained by the CNN. Compared to K-Means Clustering,
Support Vector Machines (SVM), and a single CNN classification model, after training 278 samples in a training set that
included 15 genera from two orders, the CNN-LSTM hybrid model achieved 94% accuracy in the test set, which contained 118
samples. We augmented the training set samples and four genera into four orders, and the classification accuracy of the test set
reached 100%. This study also proposes calculating the cosine similarity between the training and test sets to initially assess the

reliability of the predicted results and discover new species.

Index Terms: COI gene, DNA barcode, CNN-LSTM hybrid, Species classification

I. INTRODUCTION
A. Cytochrome oxidase subunit | (COIl) gene

Mitochondrial DeoxyriboNucleic Acid (DNA) is the
genetic structure of mitochondria and is an important organ-
elle that produces energy (adenosine triphosphate) for cells.
Because mitochondria mainly pass through egg cells, they
have strong maternal genetic characteristics and enhance the
genetic specificity of the species. As shown in Fig. 1, the
Cytochrome ¢ Oxidase subunit I (COI) gene is a fragment of
about 650 bp (a base pair is a basic unit of double-stranded
nucleic acids consisting of two nucleobases bound to each
other by hydrogen bonds) at the 5' terminal of the COI gene
in mitochondrial Deoxyribonucleic Acid (DNA). The evolu-

tionary rate of the COI gene was high, and the variation
between species was generally obvious. However, within the
species, the variation was relatively conserved.

Hebert conducted a series of confirmatory studies [1,2,3];
the first experiment used the COI gene to classify several
species into their phyla and orders, and to classify several
Lepidoptera insects into their own species; the second exper-
iment selected about 2200 species from 11 animal phyla.
After partial sequence comparison between the COI genes in
intraspecific and closely related species, more than 90% of
the species had significantly greater interspecific differences
than intraspecific differences. The third experiment was per-
formed on North American birds with better taxonomic stud-
ies. Most species can be distinguished by comparing their
COI gene sequences.
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B. Related Work

Traditional species identification requires a familiarity
with the morphological characteristics of multiple groups.
Therefore, manual classification requires large investments
in resources and time. With the development of next-genera-
tion sequencing technology, acquisition of the COI gene has
become faster and easier. The COI gene is widely used as an
effective DNA barcode taxonomic identification. It can
greatly reduce manpower, and at the same time, it will have
better performance [4] for identifying species that are diffi-
cult to distinguish, such as small insects, or a period of
inconspicuous morphological features, such as larval stages.
This approach will facilitate the development of species
identification methods. Many related research projects have
been launched, including the AIl Leps Barcode of Life and
Fish Barcode of Life Initiative.

The statistical method of constructing a phylogenetic tree
by genetic comparison can be used to understand the evolu-
tionary history of organisms and distinguish between species.
The neighbor-joining method can determine the adjacent taxa
that have the closest genetic distance [5]. The maximum
likelihood method was used to select a phylogenetic tree
with the most significant likelihood value. These methods
require extensive computation to establish differentiation
systems; therefore, they are only suitable for a limited
amount of data analysis.

With the development of artificial neural networks, classi-
fication processes have become faster and more efficient.
Tampuu et al. developed a ViraMiner model containing two
branches based on a Convolutional Neural Network (CNN)
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Fig. 1. Location of the MT- COI gene in the human mitochondrial genome.
MT- COl is one of the three cytochrome c oxidase subunit mitochondrial
genes and it is also called COX1 (https://en.wikipedia.org/wiki/Cytochrome_c
_oxidase_subunit_l).
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to predict the likelihood that an input DNA sequence is a
virus [6]. Singh et al. utilized deep bidirectional Long Short-
Term Memory (LSTM) to predict the origin of replication
sequences in organisms [7]. Gunasekaran et al. used a hybrid
model of CNN-LSTM for nine types of viruses: COVID,
SARS, MERS, dengue, hepatitis, and influenza; the model
achieved a high accuracy of 93.13% [8]. These models
demonstrated that artificial neural networks perform well in
the field of biological genetic information.

Il. SYSTEM MODEL AND METHODS
A. Data collection and data pre-processing

We used the GenBank nucleic acid sequence database in
the National Center for Biotechnology Information (NCBI)
to retrieve relevant genetic information in two orders,
Rodentia and Lagomorpha, and the COI gene sequences of
396 animals were randomly obtained. They contained 15 dif-
ferent genera of animals: Rattus, Maxomys, Niviventer, Grao-
mys, Eligmodontia, Phyllotis, Abrothrix, Akodon, Euneomys,
Calomys, Tamias and Ochotona belonging to Rodentia order,
and Sylvilagus, Oryctolagus, Lepus belonging to Lagomor-
pha order. Finally, 278 and 118 samples were randomly
selected as the training and test sets, respectively [9].

The one-hot encoding method can be used to encode
nucleotides [10,11], so we used four types of vectors to rep-
resent Adenosine (A), Thymine (T), Cytosine (C), Guanine
(G): [1,0,0,0], [0,1,0,01, [0,0,1,0], [0,0,0,1], and [0,0,0,0] The
values in the vector were considered the probabilities of the
four bases at each position in the DNA sequence. We per-
formed an operation aligned sequences of the same length
(729 bp). The input vector of the CNN was a 27 x 27 x 4
matrix, and that of the LSTM was a 4 x 729 matrix.

B. Classifier models

The K-means algorithm is a classic partition-based cluster-
ing method. The basic steps of the algorithm are as follows:
(1) clustering is performed with k points in the space as cen-
troids, (2) objects are classified in the nearest order, and (3)
the value of the centroid of each cluster is updated iteratively
until the best clustering result is obtained. However, cluster-
ing does not perform well when the data are unbalanced.

The Support Vector Machine (SVM) method has a positive
effect on solving binary classification problems by creating a
decision boundary that is the maximum-margin hyperplane.
SVM parameters, such as the kernel and penalty parameters,
have a significant influence on the complexity and perfor-
mance of the prediction models [12]. SVM can perform non-
linear classification using the kernel method.

A CNN is a multilayer artificial neural network that uses
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weight-sharing and gradient back-propagation algorithms to
train the model [13]. The CNN mainly consists of input lay-
ers, a convolutional layer for kernel computation to extract
features, a Rectified Linear Unit layer, a pooling layer for
dimensionality reduction, a fully connected layer for com-
bining local features for classification, and an output layer to
obtain confidence scores for predicting different categories
using the softmax activation function.

The LSTM network [14] can memorize values for an
indefinite length of time using four unique gates, as shown
in Fig. 2(a): As shown in formula (1), the forget gate limits
the impact of the previous state from the present state; as
shown in formulas (2) and (3), the input gate for introducing
inputs, as shown in formula (4), the cell state can be
updated; and as shown in formulas (5) and (6), the output
gate determines the output value of this unit. In the formula
(1~6), x, is the input at time t; by, b;, b, and b, are the bias
respectively in the forget gate, input gate, cell state update,
and output gate; wg, w;, w,, and w, respectively are the net-
work weights in forget gate, input gate, cell state update, and
output gate; fi, i,, and o, respectively are the results of forget
gate, input gate, and output gate at time t; c,, ¢, and ¢
respectively are the cell state at time t-1 and time t, and the
candidate cell state at time t; h._; and h, respectively are the
output at time t-1 and time t; o is the logistic sigmoid func-
tion and tanh is the tanh function. The LSTM network
retains important features through various gate functions,
which can effectively slow down the gradient disappearance
or explosion that may occur in long-sequence problems, and
has better performance in long-sequence problems.
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Fig. 2. Schematic diagram of cell state in LSTM. x is the input at time t; h;
are the output at time t; o is the logistic sigmoid function and tanh is the tanh
function; + for sum operation and * for multiplication operation.

C. CNN-LSTM Hybrid Models

We referred to other studies on gene classification and
found that CNN are highly efficient classifiers. As described
in [15], a conventional three-layer CNN model was developed
to predict the effects of non-coding variants from genomic
sequences only. Gene classification models do not require
complex convolutional structures. Based on our experimental
data, we found that the input vector of our CNN was only a
27 x 27 x 4 matrix; therefore, we decided to use CNN as our
gene classification selector. We further optimized the
performance of the CNN by adjusting its hyperparameters
and achieved an accuracy of 91% on the test set. However,
CNN convolutions typically require large amounts of data
for feature learning. Given the limited amount of available
COI gene data, enhancing the feature-extraction ability of
the classification model is critical. As we all know, gene
expression at the microscopic level determines the morphology
of organisms at the macroscopic level. Organisms of the
same species often have similar forms, resulting in differences
in the probability of gene sequence arrangements at the
microscopic level. Therefore, to take advantage of this
characteristic, we chose to use the LSTM network, which
performs well in long-series continuous prediction. We
concatenate the feature maps of the CNN and LSTM
networks and feed them into a CNN for classification
prediction. A high accuracy of 94% was achieved for the
same test set. Our model differs from traditional statistical
methods because it is highly trainable and computationally
efficient. In addition, our CNN-LSTM hybrid model achieved
better classification performance than the CNN alone, even
with a small amount of data, without increasing the number
of training samples. From a biological perspective, we also
explained that the mutability of genes could cause CNN
networks to suffer from performance suppression, whereas
the CNN-LSTM network improved the extraction of gene
features by utilizing the differences in the probability of
nucleotide arrangement in the genes, thus improving the
performance of the classifier.

lll. RESULTS

In the K-means algorithm model, 209 samples from the
training set were classified correctly and 69 were classified
incorrectly. The results indicated that the classification of the
training set was not effective. Although inter-genera differ-
ences in COI genes are generally greater than intra-genera
differences, there is still a certain degree of conserved
sequences in the genes of the different genera, at the same
time, there is a certain rate of variation in the genes within
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the genera. The inter- and intra-genera differences both had a
significant impact on the results of this model. In the follow-
ing section, we calculate the genetic distance of genes to dis-
cuss the reasons for this in depth.

Within the SVM algorithm model, which uses the linear
kernel method and shows the best performance, 51 samples
were correctly classified and 67 were incorrectly classified
in the test set, with an accuracy rate of 43%. Owing to the
uneven number of samples from various classes in the train-
ing set, overfitting the training set rendered the predictions
less effective.

We compared the accuracy of the single CNN model with
different hyperparameters, as listed in Tabel 1. The CNN
model performed better than the other models, with 91%
accuracy. For the experimental result that is genera Graomys
and Phyllotis were be misclassified as Tamias, and Akodon
was misclassified as Sylvilagus, we compute and compare
Graomys Phyllotis and Phyllotis genera genetic distances in
the testing set by Megall, as shown in Fig. 3. Genetic dis-
tance refers to the degree of genetic difference between dif-
ferent species, in general, the genetic distance within a
specie is relatively small. And as we analyzed, the genetic
difference within the species can affect the accuracy of the
model classification.

The average distances within Graomys genera is 0.0076,
Phyllotis is 0.0075, and Tamia is 9.9188. There are large dif-
ferences within the Tamia genera. The average distance between
Graomys and Tamia is 6.1711. The mean inter-genus dis-
tance between Graomys and Tamia was smaller than the
mean intra-genus distance of Tamia, increasing the possibil-
ity that Graomys was misclassified as Tamia during the clas-
sification process. The mean intergeneric distance between
Phyllotis and Tamia was 20.6192. The distance between
Phyllotis and Tamia was only twice that between Phyllotis
and Tamia. In the case of incomplete feature extraction, the
possibility of misclassifying Tamia could increase. The aver-
age genetic distance within Sylvilagu was 2.3636. However,
the intergeneric distance between Sylvilagu and Akodon was
only 1.6861. This increased the probability of Akodon being
misclassified as Sylvilagu. Therefore, in the case of large
intra-genera variations, the prediction results are likely to be
affected, and the accuracy rate will be reduced.

Another factor that may affect the accuracy is likely
caused by the CNN model. During the downsampling pro-

cess, the extracted features are most likely to lose details.
The encoded gene sequences were not similar to the image
matrix and exhibited a strong correlation at the pixel level.
As shown in Fig. 4, similar compositions of A+T and C+G
bases in Graomys and Tamias or Akodon and Sylvilagus also
increase the probability of misclassification.

The total number of permutations in the triplets was 64, a
value well exceeding the number of amino acids (20). This
indicates that many amino acids are specified by more than
one codon, a phenomenon called degeneracy [16]. At the
same time, morphologically close genera will produce closer
gene expression, so we believe that the combination between
bases is not completely random--the combination probability
between different bases in triplets is different inter-genera.
To take advantage of this characteristic, we used an LSTM
network, which has good performance in long-series contin-
uous prediction, such as text learning, which improves the
classification ability of the network by extracting long-term
sequential features. We built a CNN-LSTM hybrid model, as
shown in Fig. 5. The CNN and LSTM networks were trained
individually, and the feature map of the LSTM was merged
with that of the CNN. Finally, the combined features are
passed through the dense layer in the CNN to predict the
genera. The results showed that 7 samples of Calomys were
misclassified as Euneomys or Graomys, and the accuracy of
the hybrid model was 94%.

We then added 17 Calomys samples to the training set.
The number of samples in the training set was increased to
295, but the number of other genera in the training or test set
remained unchanged. In addition, we retrained the model,
and the prediction results of the test set were completely cor-
rect. To demonstrate the generality of the model, we used
four genera: Parambassis (Actinopteri order), Hygrobates
(Trombidiformes order), Nephrops (Decapodaorder), Bombus
(Hymenoptera order). The training set was increased to 315
samples and the test set was increased to 126. The test set
was completely classified using the CNN-LSTM hybrid
model.

We also performed non-feature combining; thus, the feature
was first obtained through the CNN model and then passed
into the LSTM network [17]. The experimental results were
very similar to those obtained using a single CNN model.
The LSTM network does not play an effective role. We did
not increase the number of layers in the network further

Table 1. Hyperparameters of the CNN and accuracy of the test set. Contents in the table: the numbers on the left indicate the variables of the parameters, and
the numbers on the right is the accuracy of the CNN network on the test set. The parameters marked in red are the final optimization parameters of the CNN

Hyper-parameters and accuracy

Number of kernels 32,78%
Kernel size of Convolution layer 2, 88%
Kernel size of Max-pooling layer 2, 88%
Number of Convolution layer 1, 88%
Coefficient of dropout 0.6, 84%

64, 88% 128, 83% 256, 83%
3, 80% 4, 78% 5, 78%
3,89% 4, 89% 5, 89%
2,89% 3, 78% 4, 78%
0.5, 90% 0.4,91% 0.3, 89%
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Fig. 3. There is the genetic distance of the 36 different testing samples, and different samples are recorded by Genbank ID. The data are used to analyze the

Inter-genera and intra-genera genetic distance.

of a set of mutational signatures can be evaluated by exam-

because our network is very simple and performs well in
classification. This will also be more convenient for fine-

ining the distribution of cosine similarities between signa-

tures. Similarly, to understand the model’s genus prediction

tuning. In contrast to previous studies, we used the original

results, we also referenced the cosine similarity values in the

DNA sequence directly instead of the K-Mer method for
encoding [18]. This met method is very effective for small

model. The formula is shown in formula (7): A; and B; are

the components of vectors, and n is the size of the vector.

DNA sequences, such as the COI gene, which ensures the
transmission of genetic information and reduces complicated

pre-processing process.

We used the average of the feature vectors from the same
genera in the training set shown in Formula (8), where m is
the number of training samples. It can be used to measure

As stated by Alexandrov et al. [19], the overall separation
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base content of different genera
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Fig. 4. Base content of the genera Phyllotis, Graomys, Tamia, Akodon, and
Sylvilagu among misclassified samples in the test set. The blue column
indicates the proportion of Adenosine (A)-Thymine (T) base pairs, and the
orange column indicates the proportion of Cytosine (C)-Guanine (G) base
pairs.
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the similarity between the test and training sets. This value
can be used to measure the similarity between the test sam-
ples and training set. The closer the value is to 1, the greater
the similarity between the two vectors. The values range
from 0.733 to 0.999, as shown in Fig. 6. This indicates that
the test sequence was highly similar to the training set.
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Fig. 6. statistics of cosine-similarity value in the test set samples.

IV. DISCUSSION AND CONCLUSIONS
A. Results and Discussion

In contrast to previous studies that calculated the K-Mer
frequency [20], the bases of the COI gene were converted to
a vector matrix by one-hot encoding and could work directly
on the sequence to make the model more direct and conve-
nient. The feature extraction ability of the model can be
improved with 94% accuracy by combining two features that
are separate from the CNN and LSTM networks. When 17
Calomys samples or four genera, the model performed sig-
nificantly with an accuracy of 100%. This implies that the
proposed model is trainable and applicable. Compared with
the K-means and SVM algorithm models, our hybrid model
is more concise and efficient. There is no need to rebuild the
model when expanding the amount of data, but only to fine-
tune it to optimize the model.

We referred to the cosine similarity value to understand
the results and initially assess the reliability of the predic-
tions. The test set maintained a high degree of similarity
with the training set, with values between 0.733 and 0.999.
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We calculated the cosine similarity value of the Ratfus sam-
ple compared to that of the Akodon sample, which was only
0.559. Therefore, classification results with lower similarity
values indicate that they are likely to be misclassified or that
a new species exists.

B. Future Research

We constructed a CNN-LSTM hybrid model because the
genetic information in the database is unbalanced in quantity,
and there is a large deviation in the number of randomly
selected samples. Although good classification results have
been achieved, in future research, we need to develop the
model using a larger dataset or for species classification.
Mitochondria may not have a sufficient and stable mutation
rate if the species formation time is very short or if mito-
chondrial gene outflow is present in closely related species.
This makes it difficult to classify COI genes. If we set a dif-
ferent cosine similarity threshold for every category, it could
help quantitatively evaluate the prediction results and
improve the function of the model.
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