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Abstract

The COI gene is a sequence of approximately 650 bp at the 5' terminal of the mitochondrial Cytochrome c Oxidase subunit I

(COI) gene. As an effective DeoxyriboNucleic Acid (DNA) barcode, it is widely used for the taxonomic identification and

evolutionary analysis of species. We created a CNN-LSTM hybrid model by combining the gene features partially extracted by

the Long Short-Term Memory ( LSTM ) network with the feature maps obtained by the CNN. Compared to K-Means Clustering,

Support Vector Machines (SVM), and a single CNN classification model, after training 278 samples in a training set that

included 15 genera from two orders, the CNN-LSTM hybrid model achieved 94% accuracy in the test set, which contained 118

samples. We augmented the training set samples and four genera into four orders, and the classification accuracy of the test set

reached 100%. This study also proposes calculating the cosine similarity between the training and test sets to initially assess the

reliability of the predicted results and discover new species.

Index Terms: COI gene, DNA barcode, CNN-LSTM hybrid, Species classification

I. INTRODUCTION

A. Cytochrome oxidase subunit I (COI) gene

Mitochondrial DeoxyriboNucleic Acid (DNA) is the

genetic structure of mitochondria and is an important organ-

elle that produces energy (adenosine triphosphate) for cells.

Because mitochondria mainly pass through egg cells, they

have strong maternal genetic characteristics and enhance the

genetic specificity of the species. As shown in Fig. 1, the

Cytochrome c Oxidase subunit I (COI) gene is a fragment of

about 650 bp (a base pair is a basic unit of double-stranded

nucleic acids consisting of two nucleobases bound to each

other by hydrogen bonds) at the 5' terminal of the COI gene

in mitochondrial Deoxyribonucleic Acid (DNA). The evolu-

tionary rate of the COI gene was high, and the variation

between species was generally obvious. However, within the

species, the variation was relatively conserved.

Hebert conducted a series of confirmatory studies [1,2,3];

the first experiment used the COI gene to classify several

species into their phyla and orders, and to classify several

Lepidoptera insects into their own species; the second exper-

iment selected about 2200 species from 11 animal phyla.

After partial sequence comparison between the COI genes in

intraspecific and closely related species, more than 90% of

the species had significantly greater interspecific differences

than intraspecific differences. The third experiment was per-

formed on North American birds with better taxonomic stud-

ies. Most species can be distinguished by comparing their

COI gene sequences.
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B. Related Work

Traditional species identification requires a familiarity

with the morphological characteristics of multiple groups.

Therefore, manual classification requires large investments

in resources and time. With the development of next-genera-

tion sequencing technology, acquisition of the COI gene has

become faster and easier. The COI gene is widely used as an

effective DNA barcode taxonomic identification. It can

greatly reduce manpower, and at the same time, it will have

better performance [4] for identifying species that are diffi-

cult to distinguish, such as small insects, or a period of

inconspicuous morphological features, such as larval stages.

This approach will facilitate the development of species

identification methods. Many related research projects have

been launched, including the AII Leps Barcode of Life and

Fish Barcode of Life Initiative.

The statistical method of constructing a phylogenetic tree

by genetic comparison can be used to understand the evolu-

tionary history of organisms and distinguish between species.

The neighbor-joining method can determine the adjacent taxa

that have the closest genetic distance [5]. The maximum

likelihood method was used to select a phylogenetic tree

with the most significant likelihood value. These methods

require extensive computation to establish differentiation

systems; therefore, they are only suitable for a limited

amount of data analysis.

With the development of artificial neural networks, classi-

fication processes have become faster and more efficient.

Tampuu et al. developed a ViraMiner model containing two

branches based on a Convolutional Neural Network (CNN)

to predict the likelihood that an input DNA sequence is a

virus [6]. Singh et al. utilized deep bidirectional Long Short-

Term Memory (LSTM) to predict the origin of replication

sequences in organisms [7]. Gunasekaran et al. used a hybrid

model of CNN-LSTM for nine types of viruses: COVID,

SARS, MERS, dengue, hepatitis, and influenza; the model

achieved a high accuracy of 93.13% [8]. These models

demonstrated that artificial neural networks perform well in

the field of biological genetic information.

II. SYSTEM MODEL AND METHODS

A. Data collection and data pre-processing

We used the GenBank nucleic acid sequence database in

the National Center for Biotechnology Information (NCBI)

to retrieve relevant genetic information in two orders,

Rodentia and Lagomorpha, and the COI gene sequences of

396 animals were randomly obtained. They contained 15 dif-

ferent genera of animals: Rattus, Maxomys, Niviventer, Grao-

mys, Eligmodontia, Phyllotis, Abrothrix, Akodon, Euneomys,

Calomys, Tamias and Ochotona belonging to Rodentia order,

and Sylvilagus, Oryctolagus, Lepus belonging to Lagomor-

pha order. Finally, 278 and 118 samples were randomly

selected as the training and test sets, respectively [9].

The one-hot encoding method can be used to encode

nucleotides [10,11], so we used four types of vectors to rep-

resent Adenosine (A), Thymine (T), Cytosine (C), Guanine

(G): [1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1], and [0,0,0,0] The

values in the vector were considered the probabilities of the

four bases at each position in the DNA sequence. We per-

formed an operation aligned sequences of the same length

(729 bp). The input vector of the CNN was a 27 × 27 × 4

matrix, and that of the LSTM was a 4 × 729 matrix.

B. Classifier models

The K-means algorithm is a classic partition-based cluster-

ing method. The basic steps of the algorithm are as follows:

(1) clustering is performed with k points in the space as cen-

troids, (2) objects are classified in the nearest order, and (3)

the value of the centroid of each cluster is updated iteratively

until the best clustering result is obtained. However, cluster-

ing does not perform well when the data are unbalanced.

The Support Vector Machine (SVM) method has a positive

effect on solving binary classification problems by creating a

decision boundary that is the maximum-margin hyperplane.

SVM parameters, such as the kernel and penalty parameters,

have a significant influence on the complexity and perfor-

mance of the prediction models [12]. SVM can perform non-

linear classification using the kernel method.

A CNN is a multilayer artificial neural network that uses

Fig. 1. Location of the MT- COI gene in the human mitochondrial genome.

MT- COI is one of the three cytochrome c oxidase subunit mitochondrial
genes and it is also called COX1 (https://en.wikipedia.org/wiki/Cytochrome_c
_oxidase_subunit_I).
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weight-sharing and gradient back-propagation algorithms to

train the model [13]. The CNN mainly consists of input lay-

ers, a convolutional layer for kernel computation to extract

features, a Rectified Linear Unit layer, a pooling layer for

dimensionality reduction, a fully connected layer for com-

bining local features for classification, and an output layer to

obtain confidence scores for predicting different categories

using the softmax activation function.

The LSTM network [14] can memorize values for an

indefinite length of time using four unique gates, as shown

in Fig. 2(a): As shown in formula (1), the forget gate limits

the impact of the previous state from the present state; as

shown in formulas (2) and (3), the input gate for introducing

inputs, as shown in formula (4), the cell state can be

updated; and as shown in formulas (5) and (6), the output

gate determines the output value of this unit. In the formula

(1~6), xt is the input at time t; bf , bi , bc, and bo are the bias

respectively in the forget gate, input gate, cell state update,

and output gate; wf, wi, wc, and wo respectively are the net-

work weights in forget gate, input gate, cell state update, and

output gate; ft, it, and ot respectively are the results of forget

gate, input gate, and output gate at time t; ct-1, ct, and c͂t

respectively are the cell state at time t-1 and time t, and the

candidate cell state at time t; ht-1 and ht respectively are the

output at time t-1 and time t; σ is the logistic sigmoid func-

tion and tanh is the tanh function. The LSTM network

retains important features through various gate functions,

which can effectively slow down the gradient disappearance

or explosion that may occur in long-sequence problems, and

has better performance in long-sequence problems.

(1)

(2)

(3)

(4)

(5)

(6)

C. CNN-LSTM Hybrid Models

We referred to other studies on gene classification and

found that CNN are highly efficient classifiers. As described

in [15], a conventional three-layer CNN model was developed

to predict the effects of non-coding variants from genomic

sequences only. Gene classification models do not require

complex convolutional structures. Based on our experimental

data, we found that the input vector of our CNN was only a

27 × 27 × 4 matrix; therefore, we decided to use CNN as our

gene classification selector. We further optimized the

performance of the CNN by adjusting its hyperparameters

and achieved an accuracy of 91% on the test set. However,

CNN convolutions typically require large amounts of data

for feature learning. Given the limited amount of available

COI gene data, enhancing the feature-extraction ability of

the classification model is critical. As we all know, gene

expression at the microscopic level determines the morphology

of organisms at the macroscopic level. Organisms of the

same species often have similar forms, resulting in differences

in the probability of gene sequence arrangements at the

microscopic level. Therefore, to take advantage of this

characteristic, we chose to use the LSTM network, which

performs well in long-series continuous prediction. We

concatenate the feature maps of the CNN and LSTM

networks and feed them into a CNN for classification

prediction. A high accuracy of 94% was achieved for the

same test set. Our model differs from traditional statistical

methods because it is highly trainable and computationally

efficient. In addition, our CNN-LSTM hybrid model achieved

better classification performance than the CNN alone, even

with a small amount of data, without increasing the number

of training samples. From a biological perspective, we also

explained that the mutability of genes could cause CNN

networks to suffer from performance suppression, whereas

the CNN-LSTM network improved the extraction of gene

features by utilizing the differences in the probability of

nucleotide arrangement in the genes, thus improving the

performance of the classifier.

III. RESULTS

In the K-means algorithm model, 209 samples from the

training set were classified correctly and 69 were classified

incorrectly. The results indicated that the classification of the

training set was not effective. Although inter-genera differ-

ences in COI genes are generally greater than intra-genera

differences, there is still a certain degree of conserved

sequences in the genes of the different genera, at the same

time, there is a certain rate of variation in the genes within

Fig. 2. Schematic diagram of cell state in LSTM. xt is the input at time t; ht

are the output at time t; σ is the logistic sigmoid function and tanh is the tanh
function; + for sum operation and ˟ for multiplication operation.
161 http://jicce.org



J. lnf. Commun. Converg. Eng. 21(2): 159-166, Jun. 2023 
the genera. The inter- and intra-genera differences both had a

significant impact on the results of this model. In the follow-

ing section, we calculate the genetic distance of genes to dis-

cuss the reasons for this in depth.

Within the SVM algorithm model, which uses the linear

kernel method and shows the best performance, 51 samples

were correctly classified and 67 were incorrectly classified

in the test set, with an accuracy rate of 43%. Owing to the

uneven number of samples from various classes in the train-

ing set, overfitting the training set rendered the predictions

less effective.

We compared the accuracy of the single CNN model with

different hyperparameters, as listed in Tabel 1. The CNN

model performed better than the other models, with 91%

accuracy. For the experimental result that is genera Graomys

and Phyllotis were be misclassified as Tamias, and Akodon

was misclassified as Sylvilagus, we compute and compare

Graomys Phyllotis and Phyllotis genera genetic distances in

the testing set by Mega11, as shown in Fig. 3. Genetic dis-

tance refers to the degree of genetic difference between dif-

ferent species, in general, the genetic distance within a

specie is relatively small. And as we analyzed, the genetic

difference within the species can affect the accuracy of the

model classification.

The average distances within Graomys genera is 0.0076,

Phyllotis is 0.0075, and Tamia is 9.9188. There are large dif-

ferences within the Tamia genera. The average distance between

Graomys and Tamia is 6.1711. The mean inter-genus dis-

tance between Graomys and Tamia was smaller than the

mean intra-genus distance of Tamia, increasing the possibil-

ity that Graomys was misclassified as Tamia during the clas-

sification process. The mean intergeneric distance between

Phyllotis and Tamia was 20.6192. The distance between

Phyllotis and Tamia was only twice that between Phyllotis

and Tamia. In the case of incomplete feature extraction, the

possibility of misclassifying Tamia could increase. The aver-

age genetic distance within Sylvilagu was 2.3636. However,

the intergeneric distance between Sylvilagu and Akodon was

only 1.6861. This increased the probability of Akodon being

misclassified as Sylvilagu. Therefore, in the case of large

intra-genera variations, the prediction results are likely to be

affected, and the accuracy rate will be reduced.

Another factor that may affect the accuracy is likely

caused by the CNN model. During the downsampling pro-

cess, the extracted features are most likely to lose details.

The encoded gene sequences were not similar to the image

matrix and exhibited a strong correlation at the pixel level.

As shown in Fig. 4, similar compositions of A+T and C+G

bases in Graomys and Tamias or Akodon and Sylvilagus also

increase the probability of misclassification.

The total number of permutations in the triplets was 64, a

value well exceeding the number of amino acids (20). This

indicates that many amino acids are specified by more than

one codon, a phenomenon called degeneracy [16]. At the

same time, morphologically close genera will produce closer

gene expression, so we believe that the combination between

bases is not completely random--the combination probability

between different bases in triplets is different inter-genera.

To take advantage of this characteristic, we used an LSTM

network, which has good performance in long-series contin-

uous prediction, such as text learning, which improves the

classification ability of the network by extracting long-term

sequential features. We built a CNN-LSTM hybrid model, as

shown in Fig. 5. The CNN and LSTM networks were trained

individually, and the feature map of the LSTM was merged

with that of the CNN. Finally, the combined features are

passed through the dense layer in the CNN to predict the

genera. The results showed that 7 samples of Calomys were

misclassified as Euneomys or Graomys, and the accuracy of

the hybrid model was 94%.

We then added 17 Calomys samples to the training set.

The number of samples in the training set was increased to

295, but the number of other genera in the training or test set

remained unchanged. In addition, we retrained the model,

and the prediction results of the test set were completely cor-

rect. To demonstrate the generality of the model, we used

four genera: Parambassis (Actinopteri order), Hygrobates

(Trombidiformes order), Nephrops (Decapodaorder), Bombus

(Hymenoptera order). The training set was increased to 315

samples and the test set was increased to 126. The test set

was completely classified using the CNN-LSTM hybrid

model.

We also performed non-feature combining; thus, the feature

was first obtained through the CNN model and then passed

into the LSTM network [17]. The experimental results were

very similar to those obtained using a single CNN model.

The LSTM network does not play an effective role. We did

not increase the number of layers in the network further

Table 1. Hyperparameters of the CNN and accuracy of the test set. Contents in the table: the numbers on the left indicate the variables of the parameters, and
the numbers on the right is the accuracy of the CNN network on the test set. The parameters marked in red are the final optimization parameters of the CNN

Hyper-parameters and accuracy

Number of kernels 32, 78% 64, 88% 128, 83% 256, 83%

Kernel size of Convolution layer 2, 88% 3, 80% 4, 78% 5, 78%

Kernel size of Max-pooling layer 2, 88% 3, 89% 4, 89% 5, 89%

Number of Convolution layer 1, 88% 2, 89% 3, 78% 4, 78%

Coefficient of dropout 0.6, 84% 0.5, 90% 0.4, 91% 0.3, 89%
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because our network is very simple and performs well in

classification. This will also be more convenient for fine-

tuning. In contrast to previous studies, we used the original

DNA sequence directly instead of the K-Mer method for

encoding [18]. This met method is very effective for small

DNA sequences, such as the COI gene, which ensures the

transmission of genetic information and reduces complicated

pre-processing process.

As stated by Alexandrov et al. [19], the overall separation

of a set of mutational signatures can be evaluated by exam-

ining the distribution of cosine similarities between signa-

tures. Similarly, to understand the model’s genus prediction

results, we also referenced the cosine similarity values in the

model. The formula is shown in formula (7): Ai and Bi are

the components of vectors, and n is the size of the vector.

We used the average of the feature vectors from the same

genera in the training set shown in Formula (8), where m is

the number of training samples. It can be used to measure

Fig. 3. There is the genetic distance of the 36 different testing samples, and different samples are recorded by Genbank ID. The data are used to analyze the
Inter-genera and intra-genera genetic distance.
163 http://jicce.org
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the similarity between the test and training sets. This value

can be used to measure the similarity between the test sam-

ples and training set. The closer the value is to 1, the greater

the similarity between the two vectors. The values range

from 0.733 to 0.999, as shown in Fig. 6. This indicates that

the test sequence was highly similar to the training set.

(7)

(8)

IV. DISCUSSION AND CONCLUSIONS

A. Results and Discussion

In contrast to previous studies that calculated the K-Mer

frequency [20], the bases of the COI gene were converted to

a vector matrix by one-hot encoding and could work directly

on the sequence to make the model more direct and conve-

nient. The feature extraction ability of the model can be

improved with 94% accuracy by combining two features that

are separate from the CNN and LSTM networks. When 17

Calomys samples or four genera, the model performed sig-

nificantly with an accuracy of 100%. This implies that the

proposed model is trainable and applicable. Compared with

the K-means and SVM algorithm models, our hybrid model

is more concise and efficient. There is no need to rebuild the

model when expanding the amount of data, but only to fine-

tune it to optimize the model.

We referred to the cosine similarity value to understand

the results and initially assess the reliability of the predic-

tions. The test set maintained a high degree of similarity

with the training set, with values between 0.733 and 0.999.

Fig. 4. Base content of the genera Phyllotis, Graomys, Tamia, Akodon, and

Sylvilagu among misclassified samples in the test set. The blue column
indicates the proportion of Adenosine (A)-Thymine (T) base pairs, and the
orange column indicates the proportion of Cytosine (C)-Guanine (G) base

pairs.

Fig. 5. CNN-LSTM hybrid model. The structure of CNN network: Input layer;
the first Convolution layer: kernel size is (2,2), the number of kernels is 64, the
activation function is ‘ReLU’, dropout coefficient is 0.2; the second

Convolution layer: kernel size is (2,2), the number of kernels is 64, the
activation function is ‘ReLU’; Max-pooling layer: kernel size is (3,3); Flatten
layer; the first Dense layer: the number of kernels is 729, the activation

function is ‘ReLU’, dropout coefficient is 0.4; the second Dense layer: the
number of kernels is 15, the activation function is ‘softmax’. The structure of
LSTM network: Input layer: the number of unites is 729, dropout coefficient is

0.1; Dense layer: the number of unites is 1.

Fig. 6. Statistics of cosine-similarity value in the test set samples.
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We calculated the cosine similarity value of the Rattus sam-

ple compared to that of the Akodon sample, which was only

0.559. Therefore, classification results with lower similarity

values indicate that they are likely to be misclassified or that

a new species exists. 

B. Future Research

We constructed a CNN-LSTM hybrid model because the

genetic information in the database is unbalanced in quantity,

and there is a large deviation in the number of randomly

selected samples. Although good classification results have

been achieved, in future research, we need to develop the

model using a larger dataset or for species classification.

Mitochondria may not have a sufficient and stable mutation

rate if the species formation time is very short or if mito-

chondrial gene outflow is present in closely related species.

This makes it difficult to classify COI genes. If we set a dif-

ferent cosine similarity threshold for every category, it could

help quantitatively evaluate the prediction results and

improve the function of the model.
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