• Title/Summary/Keyword: mission modeling

Search Result 129, Processing Time 0.029 seconds

System-Level Saturation Modeling of Thermal Imager (열상장비의 포화 현상에 대한 시스템 모델링)

  • Han, Seungoh;Park, Seung-Man
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.698-702
    • /
    • 2016
  • Thermal imager is now regarded as one of the key observation devices for ISR activities and getting important more and more. As other detectors, however, the thermal detectors also have maximum input and therefore they will be saturated if the input IR energy exceeds the allowed range. The saturation in the thermal detector makes it impossible to distinguish the target from background, as a result, the thermal imager does not perform its own mission anymore. In order to get an insight related with the image saturation, this paper develops a saturation model for a thermal imaging system, not a thermal detector. The proposed modeling starts from analyzing the specification of a thermal imager. Coupled with the characteristic parameters of the object, the saturation model can be used to predict the distance on which the detector is saturated. The proposed saturation model prove its validity by applying it for the case of observing a flash-bang.

Modeling of Reaction Wheel Using KOMPSAT-1 Telemetry (KOMPSAT-1 Telemetry를 활용한 반작용휠 모델링)

  • Lee, Seon-Ho;Choi, Hong-Taek;Yong, Gi-Ryeok;Oh, Si-Hwan;Rhee, Seung-U
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.45-50
    • /
    • 2004
  • The design of reaction wheel control logic is critical to achieve the spacecraft attitude stabilization and performance requirements for the successful mission. Due to various uncertainties on orbit there exist limitation to obtain the model parameters through the ground tests and to design the associated control logic. Thus, the model parameter correction using on-orbit data is essential to the control performance on orbit. This paper performs the system identification using KOMPSAT-1 telemetry data and extracts the model parameters of the reaction wheel. Moreover, the reaction wheel is remodeled and compared with the ground test results.

Development of a Toroidal CVT Controller for Agricultural Tractor (I) - Simulation for control system - (트랙터용 토로이달 무단변속기 제어시스템 개발(I) - 제어시스템 시뮬레이션 -)

  • Kim H. J.;Ryu K. H.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.395-406
    • /
    • 2004
  • Most of tractors in the world have manual gear transmission, and some of small tractors have hydrostatic trans-mission(HST). Since the HST is expensive and has low power efficiency, it is being used for only small garden tractors. The continuously variable transmission(CVT) is an alternative to the HST or power-shift gear transmissions. The driver of the CVT tractor doesn't have to operate a shift lever since the CVT controller automatically controls the speed of tractor. Thus, it is much easier to operate the CVT tractor. For the easy and stable control of the CVT tractor, an appropriate control algorithm should be developed and the dynamic modeling should be carried out before making the prototype of CVT controller. This study was conducted to develop a simulation model of the CVT control system needed to develop a PID control algorithm. The simulation model consisted of variator dynamics, hydraulic system and control computer. And the simulation model was verified by experiment. The results obtained in this study can be utilized in the design of CVT tractors for practical use, but a lot of field tests and improvement of softwares would be necessary.

A Tailless UAV Multidisciplinary Design Optimization Using Global Variable Fidelity Modeling

  • Tyan, Maxim;Nguyen, Nhu Van;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.662-674
    • /
    • 2017
  • This paper describes the multidisciplinary design optimization (MDO) process of a tailless unmanned combat aerial vehicle (UCAV) using global variable fidelity aerodynamic analysis. The developed tailless UAV design framework combines multiple disciplines that are based on low-fidelity and empirical analysis methods. An automated high-fidelity aerodynamic analysis is efficiently integrated into the MDO framework. Global variable fidelity modeling algorithm manages the use of the high-fidelity analysis to enhance the overall accuracy of the MDO by providing the initial sampling of the design space with iterative refinement of the approximation model in the neighborhood of the optimum solution. A design formulation was established considering a specific aerodynamic, stability and control design features of a tailless aircraft configuration with a UCAV specific mission profile. Design optimization problems with low-fidelity and variable fidelity analyses were successfully solved. The objective function improvement is 14.5% and 15.9% with low and variable fidelity optimization respectively. Results also indicate that low-fidelity analysis overestimates the value of lift-to-drag ratio by 3-5%, while the variable fidelity results are equal to the high-fidelity analysis results by algorithm definition.

A Study on The Standard Process of Battle Experiment of the Maritime Weapon Systems Based on the M&S (모의실험 기반의 해양무기체계 전투실험 프로세스 표준화 방안연구)

  • Baek, Sang-Hoon;Hur, Jung-Haeng;Lee, Dong-Hoon;Choi, Bong-Wan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.577-585
    • /
    • 2012
  • Modeling & simulation-based battle experiments(BEx) is being used extensively as an efficient, scientific and rational verification methodology for maritime weapon system acquisition. However, research of definition and concept of BEx and standardized rules and process for the BEx are insufficient in recent military field of BEx. In this study, we discussed the definition and process of BEx based on the role of MND(including JCS), Navy and ADD and proposed the standardized process of BEx for maritime weapon system. Secondly suggested a evaluation methods of modeling and simulation-based BEx with MOP, MOF, MOE in linkage of engineering, engagement, mission and constructive model. Finally presented validate result that applied to the Torpedo using standardized process based on our proposed methodology.

Operator Capacity Assessment Method for the Supervisory Control of Unmanned Military Vehicle (군사로봇의 감시제어에서 운용자 역량 평가 방법에 관한 연구)

  • Choi, Sang-Yeong;Yang, Ji-Hyeon
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.94-106
    • /
    • 2017
  • Unmanned military vehicles (UMVs) will be increasingly applied to the various military operations. These UMVs are most commonly characterized as dealing with "4D" task - dull, dirty, dangerous and difficult with automations. Although most of the UMVs are designed to a high degree of autonomy, the human operator will still intervene in the robots operation, and tele-operate them to achieve his or her mission. Thus, operator capacity, along with robot autonomy and user interface, is one of the important design factors in the research and development of the UMVs. In this paper, we propose the method to assess the operator capacity of the UMVs. The method is comprised of the 6 steps (problem, assumption, goal function identification, operator task analysis, task modeling & simulation, results and assessment), and herein colored Petri-nets are used for the modeling and simulation. Further, an illustrative example is described at the end of this paper.

Modeling and Bifurcation Analysis of the 2D Airfoil with Torsional Nonlinearity (비틀림 비선형성을 갖는 2차원 익형의 모델링 및 Bifurcation 해석)

  • Lim, Joosup;Lee, Sang-Wook;Kim, Sung-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.14-20
    • /
    • 2014
  • Recent developments for high altitude, long endurance conventional UAVs(HALE UAVs) have revealed new issues regarding aircraft structure design and analysis. First of all, due to intensive mission requirements, the structures of HALE UAVs have lightweight and very flexible main wing with high aspect ratio, and slender fuselage. For this kind of structures, aeroelastic characteristics are different from conventional aircrafts. Hence, currently developed analysis methods are not suitable to fully understand strucutral dynamics of the very flexible aircraft, and to guarantee structural reliability. Therefore, various structural studies considering nonlinear behaviors which are generally ignored for the conventional aircraft strucutral analyis have been attracting researchers interests. Nonlinear flutter of the very flexible wing is one of the subject to be studied in combination with strong coupling between aeroelastic characteristics and flight dynamics. Herein, as preliminary study, modeling and nonlinear system analysis of the 2D airfoild with torsional nonlinearity have been discussed.

Modeling and Bifurcation Analysis of the 2D Airfoil with Torsional Nonlinearity (비틀림 비선형성을 갖는 2차원 익형의 모델링 및 Bifurcation 해석)

  • Lim, Joosup;Lee, Sang-Wook;Kim, Sung-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.226-231
    • /
    • 2013
  • Recent developments for high altitude, long endurance conventional UAVs (HALE UAVs) have revealed new issues regarding aircraft structure design and analysis. First of all, due to intensive mission requirements, the structures of HALE UAVs have lightweight and very flexible main wing with high aspect ratio, and slender fuselage. For this kind of structures, aeroelastic characteristics are different from conventional aircrafts. Hence, currently developed analysis methods are not suitable to fully understand strucutral dynamics of the very flexible aircraft, and to guarantee structural reliability. Therefore, various structural studies considering nonlinear behaviors which are generally ignored for the conventional aircraft strucutral analyis have been attracting researchers interests. Nonlinear flutter of the very flexible wing is one of the subject to be studied in combination with strong coupling between aeroelastic characteristics and flight dynamics. Herein, as preliminary study, modeling and nonlinear system analysis of the 2D airfoild with torsional nonlinearity have been discussed.

  • PDF

A Study on the Prediction of Weapon System Availability Using Agent Based Modeling and simulation (에이전트 기반 모델링 및 시뮬레이션을 이용한 무기체계 가용도 예측에 관한 연구)

  • Lee, Se-Hoon;Choi, Myoung-Jin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.25-34
    • /
    • 2021
  • Availability is one of the important factor for developing weapon system, because it indicates the mission capability and sustainable life cycle management of weapon system. Recently, as weapon system becomes more advanced and more complex, availability estimation becomes more important to reduce the life cycle cost of weapon system. Modeling and simulation(M&S) is useful method to describe the availability of complex weapon system applying operational environment and maintenance plan. Especially agent based model(ABM) has the strength to describe interactions between agents and environments in complex system. Therefore, this paper presents the availability estimation of weapon system using agent based model. The sample data of part list and reliability analysis is applied to build availability estimation model. User agent and mechanic agent are developed to illustrate the behavior of operation and maintenance using formal specification. Storage reliability is applied to describe failure of each parts. The experimental result shows that this model is quite useful to estimate availability of weapon system. This model may estimate more reasonable availability, if full scale data of weapon system and real field data of operation is provided.

Measure of Effectiveness Analysis of Active SONAR for Detection (능동소나 탐지효과도 분석)

  • Park, Ji-Sung;Kim, Jea-Soo;Cho, Jung-Hong;Kim, Hyoung-Rok;Shin, Kee-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.118-129
    • /
    • 2013
  • Since the obstacles and mines are of the risk factors for operating ships and submarines, the active sonar system is inevitably used to avoid the hazards in ocean environment. In this paper, modeling and simulation algorithm is used for active sonar systemto quantify the measure of mission achievability, which is known as Measure of Effectiveness(MOE), specifically for detection in this study. MOE for detection is directly formulated as a Cumulative Detection Probability(CDP) calculated from Probability of Detection(PD) in range and azimuth. The detection probability is calculated from Transmission Loss(TL) and the sonar parameters such asDirectivity Index (DI) calculated from the shape of transmitted and received array, steered beam patterns, and Reverberation Level (RL). The developed code is applied to demonstrating its applicability.