• Title/Summary/Keyword: mission accuracy

Search Result 170, Processing Time 0.029 seconds

Study on the random noise characteristic of the tracking radar in Naro space center (나로우주센터 추적레이더의 잡음 특성 분석)

  • Choi, Jee-Hwan;Shin, Han-Seop;Kim, Dae-Oh;Kim, Tae-Hyung
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.151-157
    • /
    • 2010
  • The tracking radars in NARO space center are precious, long-range tracking systems for tracking the launch vehicle (KSLV-1) and transmitting TSPI (Time, Space and Position Information) data to MCC (Mission Control Center). Because TSPI data from tracking radars to MCC are important information for the launch mission and flight safety control, TSPI data are required to be more accurate. In this paper, we analyzed theoretically the required specification of the random noise error in tracking radar and verified the real random noise error. In this analysis, we evaluated the TSPI data of several flight tests performed in NARO space center.

Observational Arc-Length Effect on Orbit Determination for KPLO Using a Sequential Estimation Technique

  • Kim, Young-Rok;Song, Young-Joo;Bae, Jonghee;Choi, Seok-Weon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-308
    • /
    • 2018
  • In this study, orbit determination (OD) simulation for the Korea Pathfinder Lunar Orbiter (KPLO) was accomplished for investigation of the observational arc-length effect using a sequential estimation algorithm. A lunar polar orbit located at 100 km altitude and $90^{\circ}$ inclination was mainly considered for the KPLO mission operation phase. For measurement simulation and OD for KPLO, the Analytical Graphics Inc. Systems Tool Kit 11 and Orbit Determination Tool Kit 6 software were utilized. Three deep-space ground stations, including two deep space network (DSN) antennas and the Korea Deep Space Antenna, were configured for the OD simulation. To investigate the arc-length effect on OD, 60-hr, 48-hr, 24-hr, and 12-hr tracking data were prepared. Position uncertainty by error covariance and orbit overlap precision were used for OD performance evaluation. Additionally, orbit prediction (OP) accuracy was also assessed by the position difference between the estimated and true orbits. Finally, we concluded that the 48-hr-based OD strategy is suitable for effective flight dynamics operation of KPLO. This work suggests a useful guideline for the OD strategy of KPLO mission planning and operation during the nominal lunar orbits phase.

Acquiring Precise Coordinates of Ground Targets through GCP Geometric Correction of Captured Images in UAS (무인 항공 시스템에서 촬영 영상의 GCP 기하보정을 통한 정밀한 지상 표적 좌표 획득 방법)

  • Namwon An;Kyung-Mee Lim;So-Young Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.129-138
    • /
    • 2023
  • Acquiring precise coordinates of ground targets can be regarded as the key mission of the tactical-level military UAS(Unmanned Aerial System) operations. The coordinates deviations for the ground targets estimated from UAV (Unmanned Aerial Vehicle) images may depend on the sensor specifications and slant ranges between UAV and ground targets. It has an order of several tens to hundreds of meters for typical tactical UAV mission scenarios. In this paper, we propose a scheme that precisely acquires target coordinates from UAS by mapping image pixels to geographical coordinates based on GCP(Ground Control Points). This scheme was implemented and tested from ground control station for UAS. We took images of targets of which exact location is known and acquired the target coordinates using our proposed scheme. The experimental results showed that errors of the acquired coordinates remained within an order of several meters and the coordinates accuracy was significantly improved.

Quantitative analysis of the errors associated with orbit uncertainty for FORMOSAT-3

  • Wu Bor-Han;Fu Ching-Lung;Liou Yuei-An;Chen Way-Jin;Pan Hsu-Pin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.87-90
    • /
    • 2005
  • The FORMOSAT-3/COSMIC mission is a micro satellite mission to deploy a constellation of six micro satellites at low Earth orbits. The final mission orbit is of an altitude of 750-800 lan. It is a collaborative Taiwan-USA science experiment. Each satellite consists of three science payloads in which the GPS occultation experiment (GOX) payload will collect the GPS signals for the studies of meteorology, climate, space weather, and geodesy. The GOX onboard FORMOSAT -3 is designed as a GPS receiver with 4 antennas. The fore and aft limb antennas are installed on the front and back sides, respectively, and as well as the two precise orbit determination (POD) antennas. The precise orbit information is needed for both the occultation inversion and geodetic research. However, the instrument associated errors, such as the antenna phase center offset and even the different cable delay due to the geometric configuration of fore- and aft-positions of the POD antennas produce error on the orbit. Thus, the focus of this study is to investigate the impact of POD antenna parameter on the determination of precise satellite orbit. Furthermore, the effect of the accuracy of the determined satellite orbit on the retrieved atmospheric and ionospheric parameters is also examined. The CHAMP data, the FORMOSAT-3 satellite and orbit parameters, the Bernese 5.0 software, and the occultation data processing system are used in this work. The results show that 8 cm error on the POD antenna phase center can result in ~8 cm bias on the determined orbit and subsequently cause 0.2 K deviation on the retrieved atmospheric temperature at altitudes above 10 lan.

  • PDF

Orbit Analysis for KOMPSAT-2 During LEOP and Mission Lifetime (아리랑위성 2호 초기운용 및 임무기간 중 궤도 분석)

  • Kim, Hae-Dong;Jung, Ok-Chul;Kim, Eun-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.914-924
    • /
    • 2010
  • In this paper, results on the orbit analysis for the KOMPSAT-2 satellite using a real orbit data during the LEOP and normal mission lifetime are presented. In particular, the preparation and performance of an orbit operations during the LEOP is emphasized and the effects of space environments (i.e., Solar activity) on orbit evolutions are investigated comparing to those of the KOMPSAT-1 satellite. The summarized results in this paper would be an important reference to improve the stability and effectiveness of satellite operations during the LEOP and normal mission lifetime in case of LEO satellites such as successors of KOMPSAT-2 (i.e., KOMPSAT-3, KOMPSAT-3A, KOMPSAT-5).

A Geometric Compression Method Using Dominant Points for Transmission to LEO Satellites

  • Ko, Kwang Hee;Ahn, Hyo-Sung;Wang, Semyung;Choi, Sujin;Jung, Okchul;Chung, Daewon;Park, Hyungjun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.622-630
    • /
    • 2016
  • In the operation of a low earth orbit satellite, a series of antenna commands are transmitted from a ground station to the satellite within a visibility window (i.e., the time period for which an antenna of the satellite is visible from the station) and executed to control the antenna. The window is a limited resource where all data transmission is carried out. Therefore, minimizing the transmission time for the antenna commands by reducing the data size is necessary in order to provide more time for the transmission of other data. In this paper, we propose a geometric compression method based on B-spline curve fitting using dominant points in order to compactly represent the antenna commands. We transform the problem of command size reduction into a geometric problem that is relatively easier to deal with. The command data are interpreted as points in a 2D space. The geometric properties of the data distribution are considered to determine the optimal parameters for a curve approximating the data with sufficient accuracy. Experimental results demonstrate that the proposed method is superior to conventional methods currently used in practice.

Requirement Analysis of Navigation System for Lunar Lander According to Mission Conditions (임무조건에 따른 달 착륙선 항법시스템 요구성능 분석)

  • Park, Young Bum;Park, Chan Gook;Kwon, Jae Wook;Rew, Dong Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.734-745
    • /
    • 2017
  • The navigation system of lunar lander are composed of various navigation sensors which have a complementary characteristics such as inertial measurement unit, star tracker, altimeter, velocimeter, and camera for terrain relative navigation to achieve the precision and autonomous navigation capability. The required performance of sensors has to be determined according to the landing scenario and mission requirement. In this paper, the specifications of navigation sensors are investigated through covariance analysis. The reference error model with 77 state vector and measurement model are derived for covariance analysis. The mission requirement is categorized as precision exploration with 90m($3{\sigma}$ ) landing accuracy and area exploration with 6km($3{\sigma}$ ), and the landing scenario is divided into PDI(Powered descent initiation) and DOI(Deorbit initiation) scenario according to the beginning of autonomous navigation. The required specifications of the navigation sensors are derived by analyzing the performance according to the sensor combination and landing scenario.

Characteristics of Location Accuracy in KOMPSAT-2 (다목적실용위성2호 위치정확도 특성)

  • Seo, Doo-Chun;Park, Ji-Yong;Choi, Hea-Sun;Jung, Jae-Heon;Hong, Ki-Byung;Lee, Sun-Gu
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.144-151
    • /
    • 2013
  • The KOrea Multi-Purpose SATellite-2 (KOMPSAT-2) is to provide 1.0 m Ground Sample Distance (GSD) panchromatic image and 4.0 m GSD multi-spectral image data for various applications. The KOMPSAT-2 system performs mission applications in the field of earth observations, covering land, sea, coastal zones, and Geographic Information Systems (GIS). The purpose of this document is to compute ground coordinate using satellite position, velocity and attitude data in KOMPSAT-2 and document for work-flow of location accuracy correction in KOMPSAT-2.

Development of the Precise Multi-Position Alignment Method using a Pitch Motion (피치운동을 이용한 정밀 다위치 정렬기법 개발)

  • Lee, Jung-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.708-715
    • /
    • 2010
  • In Strapdown Inertial Navigation System, alignment accuracy is the most important factor to determine the performance of navigation. However by an existing self-alignment method, it takes a long time to acquire the alignment accuracy that we want. So, to attain the desired alignment accuracy in as little as $\bigcirc$ minutes, we have developed the precise multi-position alignment method. In this paper, it is proposed a inertial measurement matching transfer alignment method among alignment methods to minimize the alignment error in a short time. It is based on a mixed velocity-DCM matching method be suitable to the operating environment of vertical launching system. The compensation methods to reduce misalign error, especially azimuth angle error incurred by measurement time-delay error and body flexure error are analyzed and evaluated with simulation. This simulation results are finally confirmed by experimentations using FMS(Flight Motion Simulator) in Lab and the integration test to follow the fire control mission.

Three Dimensional Positioning Accuracy of KOMPSAT-1 Stereo Imagery

  • Jeong, Soo;Kim, Yong-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.339-345
    • /
    • 2000
  • KOMPSAT-1 was launched on 21 December, 1999 and the main mission of the satellite is the cartography to provide the imagery from a remote earth view for the production of maps of Korean territory. For this purpose, the satellite has capability to tilt the spacecraft utmost $\pm$45 degrees to acquire stereo satellite imagery in different paths. This study aims to estimate the three dimensional positioning accuracy of stereo satellite imagery from EOC(electro-optical camera), a payload of KOMPSAT-1 satellite. For this purpose, the ground control points and check points were obtained by GPS surveying. The sensor modeling and the adjustment was performed by PCI software installed in KARI (Korea Aerospace Research Institute), which contained mathematical analysis module for KOMPSAT-1 EOC. The study areas were Taejon and Nonsan, placed in the middle part of Korea. As a result of this study, we found that the RMSE(root mean square error) value of three dimensional positioning KOMPST-1 stereo imagery can be less than 1 pixel (6.6 m) if we can use about 10 GCPs(ground control points). Then, a standarrd of FGDC (Federal Geographic Data Committee) of USA was applied to the result to estimate the three dimensional positioning accuracy of KOMPSAT-1 stereo imagery.