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Abstract

In the operation of a low earth orbit satellite, a series of antenna commands are transmitted from a ground station to the 

satellite within a visibility window (i.e., the time period for which an antenna of the satellite is visible from the station) and 

executed to control the antenna. The window is a limited resource where all data transmission is carried out. Therefore, 

minimizing the transmission time for the antenna commands by reducing the data size is necessary in order to provide more 

time for the transmission of other data. In this paper, we propose a geometric compression method based on B-spline curve 

fitting using dominant points in order to compactly represent the antenna commands. We transform the problem of command 

size reduction into a geometric problem that is relatively easier to deal with. The command data are interpreted as points in 

a 2D space. The geometric properties of the data distribution are considered to determine the optimal parameters for a curve 

approximating the data with sufficient accuracy. Experimental results demonstrate that the proposed method is superior to 

conventional methods currently used in practice. 
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1. Introduction

A mission of a low earth orbit (LEO) satellite is performed 

by executing a series of commands transmitted from the 

ground station. For a timely transmission without loss of data, 

two conditions need to be satisfied. The first condition is that 

the satellite and the ground station should be able to see each 

other. The time interval in which this condition holds is called 

the visibility window, which is a limited resource during which 

the satellite and the ground station can send and receive the 

necessary data and commands. The visibility window can be 

accurately determined from the orbit information, current 

position, and velocity of the satellite. The second condition is 

that the antenna in the satellite should be oriented toward the 

ground station when the satellite enters the visibility window. 

Commands for the proper orientation of the antenna are 

prepared before the satellite enters the visibility window [1, 2]. 

Minimizing the transmission time of antenna commands is 

necessary to reserve more time for the transmission of other 

data within the visibility window. Antenna commands, which 

are used to orient the antenna of a satellite toward the ground 

station for efficient transmission of various data, are uploaded 

to the satellite within the visibility window. The transmission 

time of antenna commands depends on the mission that 

the satellite should perform. Specifically, if a complicated 

antenna control is required, the size of antenna commands 
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would increase, and subsequently, more time would be 

assigned for the command transmission within the visibility 

window. It is only after the commands are transmitted to the 

satellite and executed, that the measurement data including 

images and other satellite commands are transmitted. Since 

the visibility window is a limited resource, minimizing the 

transmission time for antenna commands is advantageous 

because more time within the visibility window could be 

assigned for transmission of other data.

Such minimization can be greatly facilitated by reducing 

the size of antenna commands. In practice, power-basis 

polynomial functions of time with a set of appropriate 

coefficients, called TPF, are considered [3]. TPF stands for 

the tracking profile file that contains information of antenna 

commands for time. This approach is useful for commands 

with a profile that changes monotonically because a 

polynomial-based function can approximate such a profile 

with sufficient accuracy. However, if the profile shows a 

complicated pattern with rapid changes of curvature, or 

with a lot of humps and hills, polynomial-based functions 

cannot accurately approximate such a pattern. Instead, the 

number of polynomial coefficients needs to be increased to 

achieve an accurate representation of the pattern. Therefore, 

there is no advantage in reducing the data size by using the 

power-basis polynomial method. Moreover, the power-basis 

polynomial method cannot reconstruct antenna commands 

because increasing the degree of the polynomial may result 

in an undesirable oscillatory behavior. Such oscillation will 

produce antenna commands that may direct oscillatory 

movement of the antenna, and induce disturbances to the 

satellite.

To overcome the drawbacks of the polynomial-based 

approach, the input data set is subdivided into subsets, 

each of which contains a lesser number of commands. Each 

subset is given as input to the polynomial-based approach. 

Then, a low-degree (less than seven) polynomial is 

considered for each segment while satisfying the continuity 

conditions at the junction points among segments using 

the boundary condition method (BCM) [3]. The BCM is not 

optimal because satisfying the continuity conditions and 

the accuracy requirement of approximation would require 

either a higher-degree polynomial or a greater reduction in 

the segment size, which would result in an increased amount 

of information for data representation. Therefore, no benefit 

can be expected from this process.

In this study, a new method based on the concept of 

B-spline curve fitting is proposed, with emphasis on a 

practical application to the LEO satellite communication. 

The problem of data compression can be formulated as a 

curve-fitting problem, which has been an active research 

topic in geometric modeling and computer graphics 

communities; substantial literature on this subject can be 

found in [4–14]. The geometric properties of the given data 

points can be fully utilized in the fitting process, making 

it possible to represent the data in a more compact way 

than the conventional method. More compression can 

be achieved by using dominant points in the curve-fitting 

process than the standard B-spline-based fitting method [15, 

16]. Here, the dominant points are points that characterize 

the shape of a given point set, typically including points of 

the local maximum curvature on a curve represented by the 

point set. Curve fitting using dominant points can improve 

the fitting accuracy with lesser control points than those not 

using them [17]. Although the geometric approach is useful 

for data compression in graphics and signal processing [15], 

it has not been used for data compression in satellite data 

transmission. The approach cannot be directly applied to 

satellite communication because of the complexity of its 

implementation and the different constraints required.

The data compression method proposed in this study can 

reduce the time for transmitting a set of antenna commands. 

Therefore, more sets of commands can be sent to the satellite 

within the same period. For missions requiring high agility, 

many sets of tracking commands are generated to represent 

such antenna movements accurately. Hence, it is necessary 

to allocate more time for transmission of the commands 

within the visibility time, leaving less time for other data 

transmissions such as images and other critical data. By 

using the B-spline-based compression method proposed 

in this study, we can reduce the size of antenna commands 

for transmission by more than 90%, thus, minimizing the 

time for transmission and maximizing the time for other 

operations within the limited visibility window.

The contributions of this study are twofold. First, the 

geometric approach based on the B-spline curve fitting 

using dominant points is applied to the LEO satellite data 

communication. Second, a new automatic process is proposed 

for the preparation of the command data representation 

for transmission. For the boundary condition method, the 

operator must determine the subdivision numbers manually 

through a couple of iterations of evaluation, computation, 

and subdivision, leading to a sub-optimal subdivision and 

increased preparation time. However, the proposed scheme 

determines the optimal result automatically and efficiently 

without any manual work.

2. Technical Background

In this section, the command structure and the BCM are 
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presented to provide the background information. 

2.1 Command Structure

The command for orienting an antenna of a satellite 

consists of the azimuth (θazi) and elevation (θele) angles at 

time t, which yields a tuple of t, θazi, and θele. The azimuth 

and elevation angles are represented as functions of time, 

respectively, producing two planar curves. Because time 

increases monotonically, each trajectory is simple, i.e., there 

exists no loop or self-intersection.

2.2 Boundary Condition Method 

Consider a set of points in 2D space, pi = (si, ai) (1 ≤ i ≤ 

m), which are organized to form a curve with no loop or self-

intersection. Assume that there is a polynomial f as follows: 
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Here, bj are unknown coefficients. The input data set is 

subdivided into nμ segments, each of which is approximated 

using a separate low-degree polynomial. For the continuity 

over the µth and µ+1th segments, in addition to the equations 

given in (2) for each segment, the following conditions 

should hold at the boundary points:
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function for the µth segment. The first equation in (3) indicates 

the condition that the two segments have the same value 

at the junction point. The second and the third equations 

indicate the continuous first and second derivative values 

over the µth and µ+1th segments. The continuity conditions 

for the first and the second derivatives imply continuous 

velocity and acceleration changes of the antenna movement 

over the two segments. With these conditions imposed, the 

antenna can be operated without a sudden change in its 

orientation, resulting in minimal disturbances to the satellite 

motion. Combining Equations (2) and (3) yields a system 

of linear equations, which can be solved using the singular 

value decomposition [16].
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The minimization problem of Equation (5) is transformed 

into solving a linear system. The quality of the curve 

c(s) approximating pi is affected by the selection of the 

parameters and the knots. However, the interaction between 

those properties is not formally defined.

3.2 ��Parameter Estimation and Knot Vector Determi-
nation

There are several methods of determining the parameters: 

uniform, chord length, and centripetal methods. The 

parameters 
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However, the interaction between those properties is not formally defined. 
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condition is violated, the system matrix becomes singular, and the objective function cannot be 

evaluated. Various approaches have been proposed to determine good knots. If the number and 

location of the knots are the unknowns to be determined, the knot placement in itself can be 

considered as a multivariate and multimodal nonlinear optimization problem [7, 10, 12]. When the 

number of knots is given, the knots can be determined by taking simple estimation approaches mostly 

based on the distribution of the parameters [7, 10]. The knots can be determined as follows [10]: 
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called the averaging technique (AVG) for m=n, and the 

knot placement technique (KTP) for m>n. Piegl and Tiller 

[20] suggested another knot placement technique (NKTP), 

which is a generalization of the AVG technique.

3.3 ��Adaptive Knot Vector Determination Using 
Dominant Points

The aforementioned estimation approaches select the 

knots in a simple and trivial manner such that each knot 

span contains almost the same number of parameter values, 

which makes it difficult to achieve an adaptive fitting. To 

overcome this shortcoming, adaptive knot placement 

methods have been proposed [17, 21, 22]. Particularly, Park 

and Lee [17] presented a knot placement approach using 

the dominant points. It progressively selects the dominant 

points governing the overall shape of the given point data, 

and then determines the knots by averaging the parameters 

of the dominant points. With the dominant points, dj (j = 

0,.., n), selected among the given points, pk (k = 0,.., m), the 

interior knots, ui, can be computed as follows:
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where jg  denotes the index of the point, kp , corresponding to a dominant point, jd  (i.e., jk g ). 

In the B-spline-based reduction method, we adopt the B-spline curve fitting using the dominant 
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knots, is , are computed as described by Park and Lee [17]. Then, the control points, jb , are easily 

computed by minimizing the objective function in Equation (5). The B-spline curve fitting using the 

dominant points yields a nonsingular system matrix during the minimization of the objective function 

in Equation (5), which assures the existence and the uniqueness of a B-spline curve that fits on the 

given points. Moreover, it can achieve an adaptive knot placement, which places fewer knots at flat 

regions but more at complex regions, providing a high probability of producing a better curve 

approximation compared with the approaches based on the trivial knot placement. 
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3.4 Accuracy Test

In this study, we consider the B-spline curve c(s) and 

the points pi to be given as c(s)=(t(s), f(s)) and pi=(ti, fi), 

respectively. Here, t(s) and f(s) denote the time and angle 

functions for the parameter s, and fi denotes the angle at 

time ti. As the function t(s) is increasing at the interval, the 

curve c(s) is monotonic. The error of the computed B-spline 

curve should be checked against a given constraint. This 

error checking is a task that the ground station should 

perform before the data transmission to the satellite begins. 

The constraint is given as an error range, within which the 

deviation of the fitted curve to the data points should lie, i.e., 

0≤ei≤Tol where 
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points is almost linear. Consider the two polygons drawn in dotted lines, which connect the upper and 
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Therefore, the approximated curve should satisfy ( ) ( ) ( )l us s s L c L . To verify this condition, the 

convex hull property of the B-spline curve, which is a property that B-spline curves always have, is 

employed. The approximated curve is subdivided into smaller curve segments for the range (si-1, si) by 

inserting knot values [10]. If the control points of the subdivided curve segments are inside the 

corresponding boundary polygon defined in Equation (9), the curve is enclosed in the polygons, i.e., 

the condition is guaranteed to be satisfied. This test is extended to all remaining ranges of s. When the 

curve satisfies the condition, the error between the curve and the given data points is evaluated to 

check if the constraints at each point are satisfied. The error measure ei is computed at si.  
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intersection or a corner where the first derivative is not continuous, the corresponding curve fitting 

may not be correctly performed. Moreover, as the time is fixed for each pair of commands, it cannot 

be adjusted for better accuracy in approximation. 
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(t(s), fele(s)), where cazi(s) and cele(s) are the B-spline curves for the azimuth and elevation angles, 
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The parameter shall be computed numerically because solving the equation analytically is difficult, in 

general. The Newton–Raphson method, which efficiently finds the solution with an accuracy provided 

by the user, is a popular choice. However, this method poses a few problems in the satellite 

application. The method needs a good initial value for convergence to a correct root, which cannot 

always be guaranteed [23]. Failure to do so may lead to an incorrect orientation of the antenna 

resulting in failure of communication. Another issue relates to the command compression ratio, which 

is the ratio of the reduced data size to the data size before reduction. Equation (10) requires n+1 

control points, which are essential for the definition of time, to represent time alone. Consequently, 

the amount of reduction may not be satisfactory. To avoid such problems, we use a simple linear 
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where ts and te are the starting and ending time values. A monotonic increase of time in a uniform 

manner is useful for data reduction. Specifically, time values can be represented as a line with ts and te 

as the starting and ending values. Any intermediate time value can be obtained by evaluating Equation 

(11). Therefore, the data that should be transmitted are ts and te, not the entire time values. For 

example, for a given time t, a parameter s* is used instead of s in Equation (10). If the error between 

the actual and approximated time using s* is within the tolerance, then the value s* is a valid parameter 

for evaluating the azimuth or elevation angle. Otherwise, the procedure increases the number of 

control points for cazi(s) or cele(s). Compared with the method of solving Equation (10) directly, the use 

of Equation (11) may require additional iterations to satisfy the accuracy constraint. However, this 

effort is negligible because only one or two additional iterations are necessary in most cases. The 

robustness of the method is guaranteed because Equation (11) can always be computed analytically. 

As time is represented using Equation (11), the following data are necessary for the proposed 
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- ��The number of control points, nazi and nele, of the B-spline 

curves, cazi(s) and cele(s). 

- The control points, {bazi, i} and {bele, i}, for cazi(s) and cele(s). 

- The degree p of the B-spline curve.

- ��The starting and ending time values, ts and te, for the 

commands.

- The knot vectors, Uazi and Uele, for cazi(s) and cele(s). 

As we use the knot vector U in the form of {0, 0, 0, 0, up+1, 

..., un, 1, 1, 1, 1}, where n is the number of control points, the 

interior knots, uj+p (j = 1,.., n-p), have to be transmitted to the 

satellite. However, the transmission of a knot vector can be 

avoided by computing it in the satellite using a simple rule 

based on the parameters of the points.

When Equation (8) is used for the knot placement (DOM), 

we can easily compute the knot vector in the satellite; 

however, we need to transmit the list of indices {gi} indicating 

which points are dominant points (i.e., di=pgi
, where 0≤gi≤m, 

i=0, ..., n). In order to reduce the amount of data transmitted 

to the satellite, we can modify the control points to encode 

the indices, {gi}, into them. Given the control points bangle, i (i = 

0,..,n) of a B-spline curve for the angle (azimuth or elevation), 

their modified control points Bangle, i are defined as follows:
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In this study, cubic B-splines are used for curve fitting 

(p = 3), and the parameters of the points are uniform since 

the time parameters are sampled at uniform intervals. As 

the indices {gk} are decoded and used to compute the knot 

vectors by using Equation (8), the knot vectors need not be 

transmitted to the satellite. The time function ct(s) is obtained 

using ts and te only. Therefore, the only elements that must 

be transmitted to the satellite for an accurate command 

reconstruction are nazi, nele, {Bazi, i}, {Bele, i}, ts, te, m, bazi, max, bazi, 

min, bele, max, and bele, min. On the other hand, when Equation (7) 

is used for knot placement (KTP), the knot vectors can be 

generated in the satellite without the four values of bazi, max, 

bazi, min, bele, max, and bele, min. However, the KTP-based approach 

tends to require relatively more control points than the 

DOM-based approach [17].

4.2. ��Decoding Method for Command Reconstruc-
tion

A. Knot vector generation with decoding of control points

The control points are decoded, and the knot vectors 

can be generated in the satellite using the data transmitted 

to the satellite. The parameters 

13 

- The minimum and maximum values of the elevation, ,maxeleb  and ,mineleb . 

 

In this study, cubic B-splines are used for curve fitting (p = 3), and the parameters of the points are 

uniform since the time parameters are sampled at uniform intervals. As the indices { kg } are decoded 

and used to compute the knot vectors by using Equation (8), the knot vectors need not be transmitted 

to the satellite. The time function ct(s) is obtained using ts and te only. Therefore, the only elements 

that must be transmitted to the satellite for an accurate command reconstruction are nazi, nele, { ,azi iB }, 

{ ,ele iB }, ts, te, m, ,maxazib , ,minazib , ,maxeleb , and ,mineleb . On the other hand, when Equation (7) is used 

for knot placement (KTP), the knot vectors can be generated in the satellite without the four values of 

,maxazib , ,minazib , ,maxeleb , and ,mineleb . However, the KTP-based approach tends to require relatively 

more control points than the DOM-based approach [17]. 

4.2. Decoding Method for Command Reconstruction 

A. Knot vector generation with decoding of control points 

The control points are decoded, and the knot vectors can be generated in the satellite using the data 

transmitted to the satellite. The parameters is  of the commands are given as i
mis  . When the KTP 

in Equation (7) is used for the knot placement, the decoding of control points is not necessary. When 

the DOM in Equation (8) is used for the knot placement, the indices ig  of the dominant points are 

determined as ,i angle ig B    , where a    is the largest integer, which is not less than the value of a. 

Then, the knot vectors are determined by Equation (8). In addition, the control points ,angle ib  are 

decoded as follows: 

, ,min ,max ,min( )angle i angle i angle angleb b v b b   ,                 (13) 

where , , ,i angle i angle i angle i iv B B B g      . 

B. Parameter estimation 

 of the commands are 

given as 

13 

- The minimum and maximum values of the elevation, ,maxeleb  and ,mineleb . 

 

In this study, cubic B-splines are used for curve fitting (p = 3), and the parameters of the points are 

uniform since the time parameters are sampled at uniform intervals. As the indices { kg } are decoded 

and used to compute the knot vectors by using Equation (8), the knot vectors need not be transmitted 

to the satellite. The time function ct(s) is obtained using ts and te only. Therefore, the only elements 

that must be transmitted to the satellite for an accurate command reconstruction are nazi, nele, { ,azi iB }, 

{ ,ele iB }, ts, te, m, ,maxazib , ,minazib , ,maxeleb , and ,mineleb . On the other hand, when Equation (7) is used 

for knot placement (KTP), the knot vectors can be generated in the satellite without the four values of 

,maxazib , ,minazib , ,maxeleb , and ,mineleb . However, the KTP-based approach tends to require relatively 

more control points than the DOM-based approach [17]. 

4.2. Decoding Method for Command Reconstruction 

A. Knot vector generation with decoding of control points 

The control points are decoded, and the knot vectors can be generated in the satellite using the data 

transmitted to the satellite. The parameters is  of the commands are given as i
mis  . When the KTP 

in Equation (7) is used for the knot placement, the decoding of control points is not necessary. When 

the DOM in Equation (8) is used for the knot placement, the indices ig  of the dominant points are 

determined as ,i angle ig B    , where a    is the largest integer, which is not less than the value of a. 

Then, the knot vectors are determined by Equation (8). In addition, the control points ,angle ib  are 

decoded as follows: 

, ,min ,max ,min( )angle i angle i angle angleb b v b b   ,                 (13) 

where , , ,i angle i angle i angle i iv B B B g      . 

B. Parameter estimation 

. When the KTP in Equation (7) is used for 

the knot placement, the decoding of control points is not 

necessary. When the DOM in Equation (8) is used for the 

knot placement, the indices gi of the dominant points are 

determined as gi=[Bangle, i], where [a] is the largest integer, 

which is not less than the value of a. Then, the knot vectors 

are determined by Equation (8). In addition, the control 

points bangle, i are decoded as follows:

13 

- The minimum and maximum values of the elevation, ,maxeleb  and ,mineleb . 

 

In this study, cubic B-splines are used for curve fitting (p = 3), and the parameters of the points are 

uniform since the time parameters are sampled at uniform intervals. As the indices { kg } are decoded 

and used to compute the knot vectors by using Equation (8), the knot vectors need not be transmitted 

to the satellite. The time function ct(s) is obtained using ts and te only. Therefore, the only elements 

that must be transmitted to the satellite for an accurate command reconstruction are nazi, nele, { ,azi iB }, 

{ ,ele iB }, ts, te, m, ,maxazib , ,minazib , ,maxeleb , and ,mineleb . On the other hand, when Equation (7) is used 

for knot placement (KTP), the knot vectors can be generated in the satellite without the four values of 

,maxazib , ,minazib , ,maxeleb , and ,mineleb . However, the KTP-based approach tends to require relatively 

more control points than the DOM-based approach [17]. 

4.2. Decoding Method for Command Reconstruction 

A. Knot vector generation with decoding of control points 

The control points are decoded, and the knot vectors can be generated in the satellite using the data 

transmitted to the satellite. The parameters is  of the commands are given as i
mis  . When the KTP 

in Equation (7) is used for the knot placement, the decoding of control points is not necessary. When 

the DOM in Equation (8) is used for the knot placement, the indices ig  of the dominant points are 

determined as ,i angle ig B    , where a    is the largest integer, which is not less than the value of a. 

Then, the knot vectors are determined by Equation (8). In addition, the control points ,angle ib  are 

decoded as follows: 

, ,min ,max ,min( )angle i angle i angle angleb b v b b   ,                 (13) 

where , , ,i angle i angle i angle i iv B B B g      . 

B. Parameter estimation 

(13)

where 

13 

- The minimum and maximum values of the elevation, ,maxeleb  and ,mineleb . 

 

In this study, cubic B-splines are used for curve fitting (p = 3), and the parameters of the points are 

uniform since the time parameters are sampled at uniform intervals. As the indices { kg } are decoded 

and used to compute the knot vectors by using Equation (8), the knot vectors need not be transmitted 

to the satellite. The time function ct(s) is obtained using ts and te only. Therefore, the only elements 

that must be transmitted to the satellite for an accurate command reconstruction are nazi, nele, { ,azi iB }, 

{ ,ele iB }, ts, te, m, ,maxazib , ,minazib , ,maxeleb , and ,mineleb . On the other hand, when Equation (7) is used 

for knot placement (KTP), the knot vectors can be generated in the satellite without the four values of 

,maxazib , ,minazib , ,maxeleb , and ,mineleb . However, the KTP-based approach tends to require relatively 

more control points than the DOM-based approach [17]. 

4.2. Decoding Method for Command Reconstruction 

A. Knot vector generation with decoding of control points 

The control points are decoded, and the knot vectors can be generated in the satellite using the data 

transmitted to the satellite. The parameters is  of the commands are given as i
mis  . When the KTP 

in Equation (7) is used for the knot placement, the decoding of control points is not necessary. When 

the DOM in Equation (8) is used for the knot placement, the indices ig  of the dominant points are 

determined as ,i angle ig B    , where a    is the largest integer, which is not less than the value of a. 

Then, the knot vectors are determined by Equation (8). In addition, the control points ,angle ib  are 

decoded as follows: 

, ,min ,max ,min( )angle i angle i angle angleb b v b b   ,                 (13) 

where , , ,i angle i angle i angle i iv B B B g      . 

B. Parameter estimation 

.

B. Parameter estimation

To use the proposed method, the elevation and azimuth 

angles at an arbitrary time must be computed. Given a 

specific time, a parameter value corresponding to the time 

is computed using Equation (11), which is then provided to 

the B-spline representation for evaluation of the elevation 

and azimuth angles in order to yield the correct angle values 

at that time. It is not necessary to evaluate the error in the 

satellite because the validity of the command representation 

is performed in the ground station before transmission.

5. Analysis of Data Size for Transmission

In this section, the proposed method is compared with 

the boundary condition method in terms of data size for 

transmission.

5.1 Data Size

A. Boundary condition method

For one segment, the boundary condition method requires 

the starting and average times of each subdivided segment. 

Let us consider that the degrees of the polynomials for the 

elevation and azimuth angles are kele and kazi, respectively. 

The numbers of coefficients for each polynomial are kele+1 

and kazi+1. Therefore, to represent the elevation and azimuth 

angles with respect to time for one segment, kele+kazi+4 values 
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are required as well as two values that define the starting and 

average times for each segment. If the number of segments is 

nμ, then the total number of values is nμ(kele+kazi+4).

B. B-spline method

When Equation (7) is used for the knot placement (KTP), 

the total number of values for transmission is nazi+nele+5. 

When Equation (8) is used for knot placement (DOM), 

the total number is nazi+nele+9. The amount of data for the 

transmission of the boundary condition method is linearly 

dependent on the number of segments, whereas that of 

the B-spline method is a function of the number of control 

points of the azimuth and elevation angles. 

5.2 Comparison

In terms of power consumption, the B-spline method is 

comparable to the boundary condition method because 

a B-spline function is a piecewise polynomial function. 

However, in terms of data size for communication, the 

B-spline method can perform better than the boundary 

condition method because the B-spline scheme can 

represent a data set more compactly.

The boundary condition method requires nμ(kele+kazi+4) of 

data, whereas the B-spline method needs nazi+nele+9 at most. 

If the degrees are fixed to be three (kele=kazi=3), the boundary 

condition method requires 10nμ. Specifically, the proposed 

method requires O(nazi+nele+9), while the boundary condition 

method needs O(nμ(kele+kazi+4)). It turns out that nμ(kele+kazi) 

is linearly proportional to nazi+nele because the number of 

control points is an indirect indication of the number of knot 

values, which are associated with the inherent subdivided 

curve segments. However, we have experimentally found 

that nμ≥nazi, and nμ≥nele. This means that the size complexity 

of the boundary condition method is larger than that of the 

proposed method. This trend becomes clearer as the shape 

of the curve gets more complicated.

6. Examples

In this section, the performance of the proposed B-spline 

method over the boundary condition method is presented 

using actual satellite command examples. In all the examples, 

the degree used for the boundary condition method is five, 

and the B-spline method uses a basis function of degree 

three. The allowable error is 1o.

Case 1

A set of 310 commands for the azimuth and elevation 

angles, which is shown in Fig. 2, is considered. The boundary 

condition method subdivides each of the profiles into six 

segments to satisfy the accuracy condition. The number of 

data for the approximation is 48 in both of the two commands. 

On the other hand, the DOM-based B-spline method only 

requires 17 and 13 data for the azimuth and elevation angles, 

respectively, while the tolerance is satisfied.

Case 2

The second example considers 263 commands with 

profiles shown in Fig. 3. The boundary condition method 

subdivides each profile into eight segments and approximates 

each profile using 64 data to satisfy the accuracy constraint. 

On the other hand, the DOM-based B-spline method 

requires 17 and 18 data for the azimuth and elevation angles, 

respectively, within the specified tolerance.

Case 3

The third example is the most complicated case, which 

the current satellite can possibly encounter in terms of the 

complexity of the trajectory that the commands represent. 

The number of such sets of commands can be more than 

one depending on the mission. In this example, however, 

one set of such commands is selected for demonstration. 
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It consists of 512 commands, which are plotted in a 2D 

plane, as shown in Fig. 4. The boundary condition method 

subdivides each profile into 16 segments, yielding 128 data 

for the approximation of each profile. On the other hand, the 

DOM-based B-spline method requires 28 and 30 data for the 

azimuth and elevation angles, respectively.

As summarized in Table 1, the B-spline method can 

represent the given commands with less information, 

which demonstrates the potential of the method for satellite 

applications. As shown in the table, the proposed method 

can reduce the data size by more than 90% compared with the 

original raw commands and from 50% to 75% compared with 

the boundary condition method. The third example is taken 

to analyze the convergence of the approximation accuracy 

using the B-spline method with respect to the number of 

coefficients. Although the error oscillates, it decreases with 

the number of coefficients as shown in Fig. 5.

7. Conclusions

In this study, we have addressed the problem of 

reducing the size of commands for a two-axis Gimbal 

antenna control in an LEO satellite for an efficient data 

transmission and proposed a method for solving the 

problem based on a geometric approach. The proposed 

method considers the commands to be points in a 2D 

space and reduces their size using the B-spline curve-

fitting scheme. Experimental and analytical results 

have demonstrated its efficiency in the reduction of 

the antenna command size for LEO satellites. The real 

examples showed the potential of the proposed method 

for satellite operation because the reduction rate is 

superior compared with that of the existing method. 

Using the proposed method, the transmission time of the 

antenna command data to the satellite can be minimized, 

saving time for the transmission of other critical data. 

This reduction is beneficial because the amount of power 

used to send and receive data and the waiting time of the 

satellite during the data transmission can be reduced, 

providing more available time for other operations.

The proposed method requires a thorough evaluation with 

the actual satellite hardware before it can be implemented 

in the satellite operation. The evaluation of the proposed 

method and its extension to multiple satellites should be 

considered in future studies.
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