• Title/Summary/Keyword: missing at random

Search Result 40, Processing Time 0.021 seconds

A Comparative Study of Assessing Average Bioequivalence in $2{\times}2$ Crossover Design with Missing Observations

  • Park, Sang-Gue;Choi, Ji-Yun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.245-257
    • /
    • 2006
  • A modified Anderson and Hauck(1983) test for analyzing a two-sequence two-period crossover design in bioequivalence trials is proposed when some observations at the second period are missing. It is based on the maximum likelihood estimators of average bioequivalence model and designed for handling missing at random(MAR) situation. The performance of the proposed test is compared to other tests using Monte Carlo simulations.

  • PDF

Bias corrected imputation method for non-ignorable non-response (무시할 수 없는 무응답에서 편향 보정을 이용한 무응답 대체)

  • Lee, Min-Ha;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.485-499
    • /
    • 2022
  • Controlling the total survey error including sampling error and non-sampling error is very important in sampling design. Non-sampling error caused by non-response accounts for a large proportion of the total survey error. Many studies have been conducted to handle non-response properly. Recently, a lot of non-response imputation methods using machine learning technique and traditional statistical methods have been studied and practically used. Most imputation methods assume MCAR(missing completely at random) or MAR(missing at random) and few studies have been conducted focusing on MNAR (missing not at random) or NN(non-ignorable non-response) which cause bias and reduce the accuracy of imputation. In this study, we propose a non-response imputation method that can be applied to non-ignorable non-response. That is, we propose an imputation method to improve the accuracy of estimation by removing the bias caused by NN. In addition, the superiority of the proposed method is confirmed through small simulation studies.

A study to improve the accuracy of the naive propensity score adjusted estimator using double post-stratification method (나이브 성향점수보정 추정량의 정확성 향상을 위한 이중 사후층화 방법 연구)

  • Leesu Yeo;Key-Il Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.6
    • /
    • pp.547-559
    • /
    • 2023
  • Proper handling of nonresponse in sample survey improves the accuracy of the parameter estimation. Various studies have been conducted to properly handle MAR (missing at random) nonresponse or MCAR (missing completely at random) nonresponse. When nonresponse occurs, the PSA (propensity score adjusted) estimator is commonly used as a mean estimator. The PSA estimator is known to be unbiased when known sample weights and properly estimated response probabilities are used. However, for MNAR (missing not at random) nonresponse, which is affected by the value of the study variable, since it is very difficult to obtain accurate response probabilities, bias may occur in the PSA estimator. Chung and Shin (2017, 2022) proposed a post-stratification method to improve the accuracy of mean estimation when MNAR nonresponse occurs under a non-informative sample design. In this study, we propose a double post-stratification method to improve the accuracy of the naive PSA estimator for MNAR nonresponse under an informative sample design. In addition, we perform simulation studies to confirm the superiority of the proposed method.

Bias-corrected imputation method for non-ignorable nonresponse with heteroscedasticity in super-population model (초모집단 모형의 오차가 이분산일 때 무시할 수 없는 무응답에서 편향수정 무응답 대체)

  • Yujin Lee;Key-Il Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.3
    • /
    • pp.283-295
    • /
    • 2024
  • Many studies have been conducted to properly handle nonresponse. Recently, many nonresponse imputation methods have been developed and practically used. Most imputation methods assume MCAR (missing completely at random) or MAR (missing at random). On the contrary, there are relatively few studies on imputation under the assumption of MNAR (missing not at random) or NN (nonignorable nonresponse) that are affected by the study variable. The MNAR causes Bias and reduces the accuracy of imputation whenever response probability is not properly estimated. Lee and Shin (2022) proposed a nonresponse imputation method that can be applied to nonignorable nonresponse assuming homoscedasticity in super-population model. In this paper we propose an generalized version of the imputation method proposed by Lee and Shin (2022) to improve the accuracy of estimation by removing the Bias caused by MNAR under heteroscedasticity. In addition, the superiority of the proposed method is confirmed through simulation studies.

Asymptotic Test for Dimensionality in Probabilistic Principal Component Analysis with Missing Values

  • Park, Chong-sun
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.49-58
    • /
    • 2004
  • In this talk we proposed an asymptotic test for dimensionality in the latent variable model for probabilistic principal component analysis with missing values at random. Proposed algorithm is a sequential likelihood ratio test for an appropriate Normal latent variable model for the principal component analysis. Modified EM-algorithm is used to find MLE for the model parameters. Results from simulations and real data sets give us promising evidences that the proposed method is useful in finding necessary number of components in the principal component analysis with missing values at random.

Rank Tests for Multivariate Linear Models in the Presence of Missing Data

  • Lee, Jae-Won;David M. Reboussin
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.319-332
    • /
    • 1997
  • The application of multivariate linear rank statistics to data with item nonresponse is considered. Only a modest extension of the complete data techniques is required when the missing data may be thought of as a random sample, and an appropriate modification of the covariances is derived. A proof of the asymptotic multivariate normality is given. A review of some related results in the literature is presented and applications including longitudinal and repeated measures designs are discussed.

  • PDF

EXTENSION OF FACTORING LIKELIHOOD APPROACH TO NON-MONOTONE MISSING DATA

  • Kim, Jae-Kwang
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.401-410
    • /
    • 2004
  • We address the problem of parameter estimation in multivariate distributions under ignorable non-monotone missing data. The factoring likelihood method for monotone missing data, termed by Rubin (1974), is extended to a more general case of non-monotone missing data. The proposed method is algebraically equivalent to the Newton-Raphson method for the observed likelihood, but avoids the burden of computing the first and the second partial derivatives of the observed likelihood. Instead, the maximum likelihood estimates and their information matrices for each partition of the data set are computed separately and combined naturally using the generalized least squares method.

Pattern-Mixture Model of the Cox Proportional Hazards Model with Missing Binary Covariates (결측이 있는 이산형 공변량에 대한 Cox비례위험모형의 패턴-혼합 모델)

  • Youk, Tae-Mi;Song, Ju-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.279-291
    • /
    • 2012
  • When fitting a Cox proportional hazards model with missing covariates, it is inefficient to exclude observations with missing values in the analysis. Furthermore, if the missing-data mechanism is not Missing Completely At Random(MCAR), it may lead to biased parameter estimation. Many approaches have been suggested to handle the Cox proportional hazards model when covariates are sometimes missing, but they are based on the selection model. This paper suggest an approach to handle Cox proportional hazards model with missing covariates by using the pattern-mixture model (Little, 1993). The pattern-mixture model is expressed by the joint distribution of survival time and the missing-data mechanism. In the pattern-mixture model, many models can be considered by setting up various restrictions, and different results under various restrictions indicate the sensitivity of the model due to missing covariates. A simulation study was conducted to show the sensitivity of parameter estimation under different restrictions in a pattern-mixture model. The proposed approach was also applied to mouse leukemia data.

Bayesian Pattern Mixture Model for Longitudinal Binary Data with Nonignorable Missingness

  • Kyoung, Yujung;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.589-598
    • /
    • 2015
  • In longitudinal studies missing data are common and require a complicated analysis. There are two popular modeling frameworks, pattern mixture model (PMM) and selection models (SM) to analyze the missing data. We focus on the PMM and we also propose Bayesian pattern mixture models using generalized linear mixed models (GLMMs) for longitudinal binary data. Sensitivity analysis is used under the missing not at random assumption.

Bioequivalence trial with two generic drugs in 2 × 3 crossover design with missing data

  • Park, Sang-Gue;Kim, Seunghyo;Choi, Ikjoon
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.6
    • /
    • pp.641-647
    • /
    • 2020
  • The 2 × 3 crossover design, a modified version of the 3 × 3 crossover design, is considered to compare the bioavailability of two generic candidates with a reference drug. The 2 × 3 crossover design is more economically favorable due to decrease in the number of sequences, rather than conducting a 3×3 crossover trial or two separate 2 × 2 crossover trials. However, when using a higher-order crossover trial, the risk of drop-outs and withdrawals of subjects increases, so the suitable statistical inferences for missing data is needed. The bioequivalence model of a of 2×3 crossover trial with missing data is defined and the statistical procedures of assessing bioequivalence is proposed. An illustrated example of the 2 × 3 trial with missing data is also presented with discussion.