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Abstract
In longitudinal studies missing data are common and require a complicated analysis. There are two popular

modeling frameworks, pattern mixture model (PMM) and selection models (SM) to analyze the missing data. We
focus on the PMM and we also propose Bayesian pattern mixture models using generalized linear mixed models
(GLMMs) for longitudinal binary data. Sensitivity analysis is used under the missing not at random assumption.
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1. Introduction

In longitudinal studies missing data are common and require a complicated analysis. Missing values
occur as dropouts whenever subjects are terminated early from a longitudinal study for reasons outside
the control of the investigator. In this thesis, we consider a particular type of dropout, known as
monotone dropout. Assume that the full-data response vector is Yi = (Yi1, . . . , YiT )T . If Yit is missing,
then Yit+1, . . . , YiT are all missing.

Diggle and Kenward (1994) provide a characterization of informative dropout for repeated out-
comes; under monotone dropout, these correspond to sequential versions of Rubin’s (1976) general
taxonomy for missing-data mechanisms. Identifiability is a serious concern when missingness is po-
tentially nonignorable; specifically, models that incorporate nonignorable missingness can be identi-
fied only through untestable parameter restrictions or distributional assumptions (Little, 1995; Rubin,
1977; Scharfstein et al., 1999). Lack of a priori knowledge about the true missing data mechanism
is frequently handled using sensitivity analyses (Scharfstein et al., 1999). Sensitivity analysis is an
assessment of sensitivity of model-based inferences to assumptions that cannot be verified or checked
with data (Daniels and Hogan, 2008).

Restrictions on missing data mechanism can be classified as missing completely at random (MCAR),
missing at random (MAR), or missing not at random (MNAR). MCAR occurs when data are missing
for reasons completely unrelated to the observed or missing parts of Y , conditionally on X. MAR is
independent of missing responses Ymis, conditionally on observed response Yobs and model covariates
X. MNAR is dependent on some part of Ymis, even after conditioning on Yobs and X.

To analyze longitudinal data with informative missingness, there are two popular modeling frame-
works, pattern mixture model (PMM) and selection models (SM), which are different in the way that
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the joint distribution of the outcome and missing data process are factorized (Daniels and Hogan,
2008; Hogan and Laird, 1997; Kenward and Molenberghs, 1999; Little, 1995; Molenberghs and Ken-
ward, 2007). Both PMMs and SMs derive their inferences based on the joint distribution f (Y,R) of
the outcome Y and the missing-data indicator R, but use different decomposition for f (Y,R).

SMs partition P(Y,R) as the product of f (Y) and f (R|Y) (Heckman, 1974). They require explicit
modeling of the missing-data mechanism where the probability of missingness depend on observed
and unobserved values. In parametric selection models sensitivity analysis is not proper because the
all parameters are not easily factored into identified and nonidentified parameters. Selection models
(although identifiable) should be approached with special caution in the context of MNAR models
(Daniels and Hogan, 2008). However, PMMs express the joint distribution as the product of P(Y |R)
and f (R) where the data are stratified by the missing data patterns with distinct parameters for each
pattern (Rubin, 1977; Little and Rubin, 2002). The marginal estimates in PMM can be derived as a
weighted average across pattern specific estimates (Little, 1995) or by using imputation (Demirtas and
Schafer, 2003). PMMs are well suited better than SMs because PMMs are easily factored with ex-
trapolation factorization that enables interpretable sensitivity analysis and the formulation of missing
data assumptions. Therefore, we use pattern mixture model.

This paper also develops Bayesian pattern mixture models using generalized linear mixed models
(GLMMs) for longitudinal binary data. We also use sensitivity analyses under the MNAR assumption.
The GLMMs are frequently used when subject-specific effect is of interest (Breslow and Clayton,
1993). In the GLMMs, the effect of covariates on response is a specified conditional on random
effects. We also consider different patterns for a random effects covariance matrix.

This paper is organized as follows. In Section 2, we provides description of a motivating example,
the Metabolic Syndrome data. In Section 3, we propose the pattern mixture GLMMs for repeated
binary data. Finally, conclusions and extensions are provided in Section 4.

2. Motivating Data: Metabolic Syndrome Data

The Korean Genomic Epidemiology Study (KoGES) monitors the development of metabolic syn-
drome for male and female Korean adults 39–69 years of age (Kim et al., 2006). In KoGES 2310
participants were examined every two years for eight years to monitor the development of metabolic
syndrome.

Metabolic syndrome is defined when three or more of the following five disorders are present:
abdominal obesity (waist circumference > 90cm in men or > 80cm in women), high blood pressure
(systolic BP levels > 130mmHg or diastolic BP levels > 85mmHg), high impaired fasting glucose
(IFG > 110mg/dl), high triglyceridemia (TG > 150mg/dl), and low high-density lipoprotein choles-
terol (HDL-C < 40mg/dl in men or < 50mg/dl in women). The primary outcome measure was whether
or not the patient had metabolic syndrome. Demographic factors of the metabolic syndrome were sex,
age, alcohol consumption, and smoking. According to previous literature on the metabolic syndrome,
the effect of covariate smoking was significant (Lee et al., 2013). Therefore, we only considered the
covariate smoking in this paper and examine the influence of smoking on metabolic syndrome.

Table 1 presents summarizes proportion metabolic syndrome, general, and missing at each year,
stratified by smoking group, and includes two commonly used estimates of overall metabolic syn-
drome patients rate. MS/(MS + G) denotes metabolic syndrome rate and (MS + M)/(MS + G + M)
denotes metabolic syndrome rate after counting missing values as metabolic syndrome patients. Here
MS is the number of people with metabolic syndrome, G is the number of people without metabolic
syndrome, and M is the number of people who dropped out. In both groups, the proportions of
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Table 1: Metabolic syndrome: number of people with metabolic syndrome, without metabolic syndrome, and
missing at each year

Group Year
2 4 6 8

Metabolic syndrome 440 (.23) 385 (.20) 307 (.16) 285(.15)

Smoking General 1454 (.77) 1373 (.73) 1372 (.72) 1131 (.60)

(n = 1894) Missing 0 136 (.07) 215 (.11) 478 (.25)
MS

MS +G
0.23 0.22 0.18 0.20

MS + M
MS +G + M

0.23 0.28 0.28 0.40

Metabolic syndrome 108 (.26) 31 (.07) 0 0

Non-smoking General 308 (.74) 98 (.24) 0 0

(n = 416) Missing 0 287 (.69) 416 (1.00) 416 (1.00)
MS

MS +G
0.26 0.24 0 0

MS + M
MS +G + M

0.26 0.76 1.00 1.00

metabolic syndrome decreased in age. However, all participants in non-smoking group dropped out
after 4 years. It indicates that typical analysis under MAR cannot be used in this case.

3. Pattern Mixture GLMMs for Repeated Binary Data

In this section, we describe generalized linear mixed models (GLMMs) for longitudinal binary data.
Then we propose pattern mixture models for dropout missingness using the GLMMs.

3.1. Generalized linear mixed models

Let Yit be a binary response at time t (t = 1, . . . , ni) for subject i (i = 1, . . . ,N), xit be the corresponding
vector of covariates, and bit be the vector of random effects for subject i. We assume that Yi =

{Yi1, . . . , Yini } are conditionally independent given random effect bit. The regression model is given by

logit pit(bit) = xitβ + bit, (3.1)

where β is the p × 1 vector of regression coefficient and pit(bit) = P(Yit = 1; bit). We assume that

bi =
(
bi1, . . . , bini

)T ∼ N(0,Σi),

where Σi is the random effects covariance matrix for subject i.

3.2. PMMs for longitudinal binary data

We now propose pattern mixture models under the missing not at random assumption. The GLMMs
are composed within pattern for longitudinal binary data. In the GLMMs, the effect of covariates on
response is specified conditional on random effects (bi). We assume full data consists of repeated
binary response Yi = (Yi1,Yi2,Yi3, Yi4) for subject i (i = 1, . . . ,N) scheduled at times t1, . . . , t4 (assume
t j = j) and Ri = (Ri1,Ri2,Ri3,Ri4)T be the observed data indicators (assuming monotone dropout),
where Ri j = 0 corresponds to Yi j being missing. We also let Zi be smoking indicator where Zi = 1 is
for the smoker and 0 for nonsmoker. We now define S i to be the number of observed responses and
assume only dropouts. The follow-up time S i = S (Ri) is defined as the final time point at which data
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are observed below:

S i =


1, if Ri = (1, 0, 0, 0),
2, if Ri = (1, 1, 0, 0),
3, if Ri = (1, 1, 1, 0),
4, if Ri = (1, 1, 1, 1).

Our proposed model is given by

logit
(
p(s)

it (bit)
)
= β(s)

0 + ziβ
(s)
1 + bit, (3.2)

where p(s)
it (bit) = p(Yit = 1|bit, S = s). Similar to the PMM in Daniels and Hogan (2008), we assume

multinomial distribution for the dropout time, S ,

S ∼ Multinomial(ϕ),

where ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) and
∑

s ϕS = 1. We also assume that

bi = (bi1, . . . , bi4) |S = s ∼ N
(
0,Σ(s)

)
.

The distribution of the random effects bi is reexpressed as:

b1|S = 1 ∼ N
(
0, σ2

1

)
, (3.3)

b1|S = 2 ∼ N
(
0, σ2

1

)
, (3.4)

b1|S = 3 ∼ N
(
0, σ2

1

)
, (3.5)

b1|S = 4 ∼ N
(
0, σ2

1

)
, (3.6)

b2|b1,S = 1 ∼ N
(
α(1)

1 b1, σ
∗2

2

)
, (3.7)

b2|b1, S ≥ 2 ∼ N
(
α(≥2)

1 b1, σ
2
2

)
, (3.8)

b3|b1,b2,S = 1, 2 ∼ N
(
α(1:2)

2 b1 + θ
(1:2)
1 b2, σ

∗2
3

)
, (3.9)

b3|b1, b2, S = 3, 4 ∼ N
(
α(≥3)

2 b1 + θ
(≥3)
1 b2, σ

2
3

)
, (3.10)

b4|b1,b2,b3,S = 1, 2, 3 ∼ N
(
α(1:3)

3 b1 + θ
(1:3)
2 b2 + γ

(1:3)
1 b3, σ

∗2
4

)
, (3.11)

b4|b1, b2, b3, S = 4 ∼ N
(
α(4)

3 b1 + θ
(4)
2 b2 + γ

(4)
1 b3, σ

2
4

)
. (3.12)

We note that variance in each pattern is same to reduce the number of parameters. Now the
parameters in (3.3)–(3.12) are reparameterized in terms of sensitivity parameters and we define the
functions h(ξM ,∆) as under MNAR:

α(s)
j = h1(ξM ,∆) = α(≥ j)

j + ∆α, j = 1, 2, 3, (3.13)

θ(s)
j = h2(ξM ,∆) = θ(≥ j)

j + ∆θ, j = 1, 2, (3.14)

γ(s)
j = h3(ξM ,∆) = γ(≥ j)

j + ∆γ, j = 1, (3.15)

σ∗j
2
= h4(ξM ,∆) = σ2

j∆σ, j = 2, 3, 4, (3.16)
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where ∆ captures the information about the missing data mechanism. In general, priors for compo-
nents of ∆α, ∆θ, and ∆γ will shift the posterior log odds away from their MAR values.

Under this parameterization of the PMM, the conditional variance parameters σ2 from nonidenti-
fied distributions do not appear in the posterior distribution of the marginal mean parameters. Hence,
priors for components of ∆σ will not affect posterior inference about marginal means. This justifies
that we consider one ∆σ.

3.3. Prior distributions

Prior distribution for parameters can still be specified as

P(ξS , ξM ,∆) = P(ξS |ξM ,∆)P(∆|ξM)P(ξM), (3.17)

where

P(ξS |ξM ,∆) = I[ξS = h(ξM ,∆)]. (3.18)

Here ξS are the (nonidentified) sensitivity parameters in the full-data model, ξM are (identified) pa-
rameters indexing the implied observed model, and ∆ captures departures from MAR. The function h
represents the missing data mechanism, and makes explicit how priors or assumptions are being used
to infer the full-data model (Rubin, 1977). In our case, h(ξM ,∆) are specified in (3.13)–(3.16).

In equation (3.17), P(ξM) is identified, P(∆|ξM) is a flat distribution in a Bayesian perspective and
P(ξS |ξM ,∆) is an indicator given like equation (3.18). It is a point mass, and P(∆|ξM) reflects prior
beliefs about departures from MAR as follows,

P(∆α,∆θ,∆γ,∆σ) = I{∆α = ∆θ = ∆γ = 0,∆σ = 1}.

The priors for ∆ and ξM as:

β(s)
0 ∼ Normal

(
0, σ2

β0
I
)
, (3.19)

β(s)
1 ∼ Normal

(
0, σ2

β1
I
)
, (3.20)

α(s)
j ∼ Normal

(
0, σ2

α j
I
)
, (3.21)

θ(s)
j ∼ Normal

(
0, σ2

θ j
I
)
, (3.22)

γ(s)
1 ∼ Normal

(
0, σ2

γ1
I
)
, (3.23)

σ2
j ∼ Uniform (0, aσ2 ) , (3.24)

∆α·θ·γ ∼ Uniform (c1, c2) , (3.25)
∆σ ∼ Uniform (0, c3) , (3.26)

where σ2
β0

, σ2
β1

, σ2
α j

, σ2
θ j

, and σ2
γ j

are large value (for example, 100). aσ2 , c1, c2, and c3 are proper
values.

3.4. Bayesian analysis via MCMC

To derive the likelihood function for the GLMM expressions (3.1) and (3.19)–(3.23) we let ω =
(β0, β1, ω2) where ω1 = (α, θ, γ, σ2,∆α·θ·γ,∆σ). The joint distribution of sample in (3.2) and the ran-
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dom effects is given by

L(ω; y, b, s) =
N∏

i=1

p(yi|bi, si, ω)p(bi|si, ω1)p(si), (3.27)

where

p(yi|bi, si, ω) =
4∏

t=1

(
p(si)

it

)yit
(
1 − p(si)

it

)1−yit
,

p(bi|si, ω1) = p(bi1|si)p(bi2|bi1, si)p(bi3|bi2, bi1, si)p(bi4|bi3, bi2, bi1, si). (3.28)

Note that the conditional distributions of the random effects bi in (3.28) are given in (3.3)–(3.12).
From the distribution (3.27) and prior distributions (3.19)–(3.26), the joint distribution is given by

p(y, b, s, ω) ∝
 N∏

i=1

p(yi|bi, si, ω)p(bi|si, ω1)p(si)

 π(β0)π(β1)π(α)π(θ)π(γ)π
(
σ2

)
π(∆α·θ·γ)π(∆σ).

Full conditional posterior distributions are required to implement the MCMC algorithm (Gelman
et al., 2004) and are given as:

• For β(s)
0 , s = 1, . . . , 4,

p
(
β(s)

0 |ω−β(s)
0

)
∝

∏
i∈As

 4∏
t=1

(
p(s)

it

)yit
(
1 − p(s)

it

)1−yit


 exp

− β(s)
0

2

2σ2
β0

 ,
where As =

{
i|subject i belongs to Pattern s

}
.

• For β(s),

p
(
β(s)

1 |ω−β(s)

)
∝

∏
i∈As

 4∏
t=1

(
p(s)

it

)yit
(
1 − p(s)

it

)1−yit


 exp

−β(s)2

2σ2
β

 .
• For α(s)

j , j = 1, 2, 3,

p
(
α(s)|ω−α(s)

)
∝

∏
i∈As

p(bi|si = s, ω)

 exp

−α(s)2

2σ2
α

 .
• For θ(s)

j , j = 1, 2,

p
(
θ(s)|ω−θ(s)

)
∝

∏
i∈As

p(bi|si = s, ω)

 exp

−θ(s)2

2σ2
θ

 .
• For γ(s)

1 ,

p
(
γ(s)

1 |ω−γ(s)
1

)
∝

∏
i∈As

p(bi|si = s, ω)

 exp

−γ(s)
1

2

2σ2
γ

 .
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• For σ2
j , j = 1, . . . , 4,

p
(
σ2

j |ω−σ2
j

)
∝

 N∏
i=1

p
(
bi j|bi j−1, . . . , bi1, si = s, ω

) .
• For ∆α·θ·γ,

p
(
∆α·θ·γ|ω−∆α·θ·γ

)
∝

 N∏
i=1

p
(
bi j|bi j−1, . . . , bi1, si = s, ω

) .
• For ∆σ,

p (∆σ) ∝
 N∏

i=1

p
(
bi j|bi j−1, . . . , bi1, si = s, ω

) .
Since all full conditionals are intractable analytically except α, θ and γ, and not easily generated from,
we have to construct suitable proposals for a Metropolis-Hastings step (Hastings, 1970; Gamerman,
1997). In practice, Gibbs sampling is implemented using WinBUGS (http://www.mrc-bsu.cam.ac.uk/
bugs/winbugs/contents.shtml). The MCMC algorithm simulates direct draws from the above full
conditionals iteratively until convergence is achieved. Two long chains are used for the proposed
model with different initial values.

Bayesian modeling has two model selection criteria, posterior predictive loss (PPL) (Gelfand and
Ghosh, 1998) and deviance information criterion (DIC) (Spiegelhalter et al., 2002). Both take into
account goodness of fit while penalizing models for overfitting (a complexity penalty) (Daniels and
Hogan, 2008). The posterior predictive loss is the average loss measured between the observed data
and data predicted from the posterior predictive distribution. The comparison is based on a user-
chosen loss function such as squared error loss. We use DIC for model comparison in this paper since
it is not easy to choose a proper loss function in categorical data.

The DIC is a model-based criterion composed of a goodness of fit term and a penalty term that
is computed as the mean deviance minus the deviance evaluated at the posterior mean. The DIC is
defined as

DIC = Dev(ω) + pD

= D(ω̃) + pD

= 2Dev(ω) − D(ω̃),

where

pD = Dev(ω) − D(ω̃)

and

Dev(ω) = −2 log L(ω|y).

The first term measures goodness of fit, Dev(ω) is evaluated at the posterior mean of the parameter
and the second term is the complexity penalty. L(ω|y) is the likelihood of y = (y1, . . . , yN)T , Dev(ω)
is the posterior mean deviance, D(ω̃) = Dev{Eω(ω|y)}, and The value of pD is the effective number of
parameters.
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Figure 1: Trace plots for β(1)
0 , β(1)

1 , α(1)
1 , and α(1)

3 from WinBUGS.

3.5. Model fits

We analyze pattern mixture models, composed of GLMMs within pattern, for repeated metabolic
syndrome data of no treatment group. We using variable Y (1 if a participant has the metabolic
syndrome and 0 otherwise) and Z (1 if a participant has smoking experience and 0 otherwise).

We fit two models for the distribution of the random effects bi. Model 1 is given in (3.3)–(3.12).
Models 2 reduces the parameters α, θ, and γ in Model 1; therefore, the distribution of bi in Model 2 is
given by

b1|S = 1 ∼ N
(
0, σ2

1

)
,

b1|S = 2 ∼ N
(
0, σ2

1

)
,

b1|S = 3 ∼ N
(
0, σ2

1

)
,

b1|S = 4 ∼ N
(
0, σ2

1

)
,

b2|b1, S = 1 ∼ N
(
α∗1b1, σ

∗2
2

)
,

b2|b1, S ≥ 2 ∼ N
(
α∗1b1, σ

2
2

)
,

b3|b1, b2, S = 1, 2 ∼ N
(
α∗2b1 + θ

∗
1b2, σ

∗2
3

)
,

b3|b1, b2, S = 3, 4 ∼ N
(
α∗2b1 + θ

∗
1b2, σ

2
3

)
,

b4|b1, b2, b3, S = 1, 2, 3 ∼ N
(
α∗3b1 + θ

∗
2b2 + γ

∗
1b3, σ

∗2
4

)
,

b4|b1, b2, b3, S = 4 ∼ N
(
α∗3b1 + θ

∗
2b2 + γ

∗
1b3, σ

2
4

)
.

Each model is implemented using MCMC algorithm using WinBUGS 1.4.3. The posterior means
were calculated with a sample size of 100,000 and burn-in period of 50,000. Figure 1 presents trace
plots from WinBUGS and we observe that the lines of a chain mixes and crosses in trace plots;
subsequently, convergence is ensured. The DIC values for two models, Models 1 and 2 are 10312.5
and 10314.8, respectively, and the two values are similar. By parsimonious rule, we take Model 1.
Table 2 presents posterior means for parameters for Model 1. The bold-faced numbers are posterior
means of h(ξM ,∆) which is given in (3.13)–(3.16).
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Table 2: Metabolic syndrome study: posterior means for parameters from the proposed model

Pattern (S) Pattern (S)
Parameter 1 2 3 4 Parameter 1 2 3 4

β(S )
0 −1.5 −1.8 −2.1 −4.7 α(S )

1 −1.0 1.4 1.4 1.4
θ(S )

2 −2.1 −2.1 −2.1 0.3 α(S )
2 −0.5 −0.5 0.3 0.3

β(S )
1 0.5 −0.1 −0.9 2.0 γ(S )

1 −1.9 −1.9 −1.9 0.5
α(S )

3 −2.3 −2.3 −2.3 0.2 θ(S )
1 −2.0 −2.0 0.5 0.5

We consider respectively two models for smoker (Z = 1) and nonsmoker (Z = 0) given by

logit
(
P(S )

it (bit)
)
= β(S )

0 + β
(S )
1 + bit, (3.29)

logit
(
P(S )

it (bit)
)
= β(S )

0 + bit. (3.30)

The differences between (3.20) and (3.21) is β(S )
1 . For patterns 1 and 4, the log odds of metabolic

syndrome for smoker are 1.65 and 7.39 higher than that for non-smoker, respectively. However,
For patterns 2 and 3, the log odds of metabolic syndrome is 0.9, 0.41 lower than that for non-smoker,
respectively. The marginal estimates over patterns can be derived as a weighted average across pattern
specific estimates. The estimated values for β0 and β1 are −3.51 and 1.20 respectively. It indicates
that the log odds of metabolic syndrome for smokers are different from non-smokers.

4. Summary and Discussion

We propose pattern mixture models for longitudinal binary data with missingness using transition
models or GLMMs. In the transition models, the serial dependence is explained via Markovian struc-
ture and the parameters are different over pattern. In the GLMMs, the effect of covariates on response
is a specified conditional on random effects. The random effects covariance matrix for the random
effects is different over patterns. All parameters are classified in both models into identified and non-
identified parameters. The nonidentified parameters are reparameterized using sensitivity parameters
and are assessed via sensitivity analysis.

The analysis of metabolic syndrome data indicated that most of participants dropped out after the
second visit. We fit two presented models using Bayesian methodology. Both identifiable and non-
identifiable parameters are estimated and sensitivity analysis uses series of point mass priors, starting
with MAR and the number of sensitivity parameters are reduced based on assumption. The log odds
of metabolic syndrome for smokers are different from that for non-smokers over patterns.
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