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Abstract
The 2 × 3 crossover design, a modified version of the 3 × 3 crossover design, is considered to compare the

bioavailability of two generic candidates with a reference drug. The 2× 3 crossover design is more economically
favorable due to decrease in the number of sequences, rather than conducting a 3×3 crossover trial or two separate
2 × 2 crossover trials. However, when using a higher-order crossover trial, the risk of drop-outs and withdrawals
of subjects increases, so the suitable statistical inferences for missing data is needed. The bioequivalence model
of a of 2×3 crossover trial with missing data is defined and the statistical procedures of assessing bioequivalence
is proposed. An illustrated example of the 2 × 3 trial with missing data is also presented with discussion.

Keywords: average bioequivalence, 3 × 3 crossover design, 3 × 2 crossover design, missing at
random, missing data

1. Introduction

A statistical procedure based on the 3 × 3 crossover design for assessing average bioequivalence
of an original drug and two generic ones at once is proposed. This 3 × 3 bioequivalence trial has an
advantage over conducting two separate 2×2 trials in terms of time and cost. The Korea Food and Drug
Administration (KFDA, currently MFDS; Ministry of Food and Drug Safety) officially announced the
partial acceptance for the regulation of the bioequivalence results from the 3×3 crossover design under
the conditions that generic drugs contain the same active ingredients and are produced by the same
company. Lee et al. (1998) proposed a model for assessing bioequivalence using a 3 × 3 crossover
design which is a simple extension of the standard 2 × 2 design and Oh et al. (1999) discussed Lee’s
work from a statistical point of view.

We believe that the 3 × 3 crossover design can be further modified to a 2 × 3 crossover design.
The 2 × 3 crossover comprises two sequences with three periods, rather than three sequences in the
case of the 3 × 3 crossover design. Such a deletion of a sequence would allow for a precise estimate
of treatment effect while utilizing the same or less number of subjects; therefore, more ethically and
economically favorable. Recently, Lim et al. (2005) proposed a statistical method of assessing average
bioequivalence in 3 × 3 crossover design when some data are missing. Lim’s method is a modified
version of Chow and Shao (1997) in 3 × 3 crossover design. Inferred from these statistical methods,
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Table 1: 3 × 3 crossover design

Sequence Period
1 2 3

1 R T2 T1
2 T2 T1 R
3 T1 R T2

Table 2: 2 × 3 crossover design

Sequence Period
1 2 3

1 R T2 T1
2 T1 R T2

the 2 × 3 crossover design could prove to be more efficient and is worthy to explore as a statistical
method for assessing average bioequivalence.

In Section 2, we illustrate the statistical model for the 2× 3 crossover design and develop simulta-
neous confidence intervals for drug effects. Next, we discuss the statistical method of constructing si-
multaneous confidence intervals for drug effects in Section 3 when dropouts occur in the later periods.
In Section 4, we provide an example of this method and its results. Lastly in Section 5, concluding
remarks are reported.

2. 2 × 32 × 32 × 3 crossover design

The standard form of 3 × 3 crossover trial is given in Table 1, where R, T1, and T2 stand for the
reference drug and two generic drugs.

One weakness of the 3×3 crossover design are its difficulty to manage in trial due to the increased
number of sequences and periods compared to the 2×2 crossover trial. One may want to reduce some
sequence or period to conduct a trial more efficiently like Table 2. It may be more advantageous to
reduce the sequence that can adjust the sample size. Let us say the second row is deleted.

The statistical model for the 2 × 3 crossover design can be written as

yi jk = µ +Gk + P j + F( j,k) + S ik + ϵi jk, (k = 1, 2; j = 1, 2, 3; i = 1, 2, . . . , nk), (2.1)

where µ is the overall mean, Gk is the fixed effect of the kth sequence with ΣGk = 0, P j is the fixed
effect of the jth period with ΣP j = 0, F( j,k) is the fixed effect of the formulation in the kth sequence
administered in the jth period such that

F( j,k) =


FR, ( j, k) = (1, 1), (2, 2),
FT1, ( j, k) = (3, 1), (1, 2),
FT2, ( j, k) = (2, 1), (3, 2),

with ΣF( j,k) = 0, and the subject variability S ik
iid∼ N(0, σs

2), and the drug variability ϵi jk
iid∼ N(0, σe

2)
and they are also assumed to be independent each other.

From the usual ANOVA construction given by Chow and Liu (2008) and Park (2014) assuming
the equal sample sizes, we can obtain Table 3.

Table 4 provides the coefficients for estimates of pairwise formulation effects in order to draw a
statistical inference on the drug effects.
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Table 3: ANOVA table for 2 × 3 crossover design

Sources Degrees of freedom Expected mean squares
Between S S 2n − 1

Sequence S S 1 σe
2 + σs

2 + 3n
(
G1

2 +G2
2
)

Residual S S (Inter) 2n − 2 σe
2 + 3σs

2

Within S S
Period S S 2 σe

2 +
n
2

{
(P1 − P2)2 + (P1 − P3)2 + (P2 − P3)2

}
+

n
12

{
(FR − FT1)2 + (FR − FT2)2 + (FT2 − FT1)2

}
−n {P1FT2 + P2FT1 + P3FR}

Drug S S 2 σe
2 +

n
4

{
(FR − FT1)2 + (FT1 − FT2)2 + (FR − FT2)2

}
Residual S S (Intra) 4n − 4 σe

2

Total S S 6n − 1

Table 4: Coefficients for estimates of pairwise formulation effects in 2 × 3 crossover design

θ1R = FT1 − FR θ2R = FT2 − FR θ21 = FT2 − FT1
Sequence Period

Σc jk
2 Period

Σc jk
2 Period

Σc jk
2

1 2 3 1 2 3 1 2 3
1 −1 2 −1 6/9 −2 1 1 6/9 −1 −1 2 6/9
2 1 −2 1 6/9 2 −1 −1 6/9 1 1 −2 6/9

Variance 4
3nσe

2 4
3nσe

2 4
3nσe

2

Coefficients are multiplied by 3; Variance when n = nk for k = 1, 2.

Denoting θ1R = FT1 − FR, θ2R = FT2 − FR, and θ21 = FT2 − FT1 , the unbiased estimators of these
parameters can be obtained through:

θ̂1R = −
1
6

Ȳ·11 +
2
6

Ȳ·21 −
1
6

Ȳ·31 +
1
6

Ȳ·12 −
2
6

Ȳ·22 +
1
6

Ȳ·32,

θ̂2R = −
2
6

Ȳ·11 +
1
6

Ȳ·21 +
1
6

Ȳ·31 +
2
6

Ȳ·12 −
1
6

Ȳ·22 −
1
6

Ȳ·32,

θ̂21 = −
1
6

Ȳ·11 −
1
6

Ȳ·21 +
2
6

Ȳ·31 +
1
6

Ȳ·12 +
1
6

Ȳ·22 −
2
6

Ȳ·32.

Now we can assess average bioequivalence by Dunnett’s (1−2α)×100% simultaneous confidence
intervals of θ1R = FT1 − FR and θ2R = FT2 − FR

θ̂1R ± d(α, 2, 4n − 4)

√
4MSintra

3n
,

θ̂2R ± d(α, 2, 4n − 4)

√
4MSintra

3n
,

where d(α, a, b) is the critical values for Dunnett’s test (a is number of treatment means and b is the
degrees of freedom) and MSIntra is obtained from Table 3.

One can claim the bioequivalence among drugs if the calculated (1−α)×100% simultaneous con-
fidence intervals based on log transformed scale belong to the pre-assigned limit (log(0.8), log(1.25)).

3. 2 × 32 × 32 × 3 crossover design with missing data

The 2 × 3 crossover design consists of three periods of testing periods with washouts between the
periods. Responses are often not obtained properly for various reasons, such as protocol violations,
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Table 5: 2 × 3 Crossover design with dropouts

Sequence Period
1 2 3

1
R T1 T2

Y111,Y211, . . . Yn111 Y121,Y221, . . . , Ym1121 Y131, Y231, . . . , Ym1231
(n1 − m11) missing (n1 − m12) missing

2
T2 R T1

Y112,Y212, . . . Yn212 Y122,Y222, . . . , Ym2132 Y132, Y232, . . . , Ym2232
(n2 − m21) missing (n2 − m22) missing

failure of assay methods, or missed visits. The unobserved responses are considered as dropouts. In
this design, the subjects are likely to drop out in the second or the third period. Dropouts in the second
period would result in missing data in both the second and third period; whereas dropouts in the third
period would result in missing data only in the third period.

When we have some dropouts, we might try Grizzle (1965)’s idea after deleting subjects with
dropouts. But it may cause some significant loss of information in statistical inference, if subjects
with missing data are deleted and statistical analysis is performed. Chow and Shao (1997) proposed
a general statistical method to compare a generic drug to the reference one in a two sequence, three
period crossover design with unbalanced or incomplete data. Lim et al. (2005) extended their method
in a 3 × 3 crossover design and this paper also modifies Lim et al.’s way in a 2 × 3 crossover design.

Without loss of generality, we assume that in the kth sequence, the first mk2 subjects have the data
for all three periods; the next mk1 − mk2 subjects have data for period 1 and period 2 like Table 5.
The sample sizes mkl(l = 1, 2) may be random and assume whether or not Yi jk is independent of the
measurement error ϵi jk (Chow and Shao, 1997).

One can express the model (2.1) as

Y = Xβ + ZS + ϵ, (3.1)

here X is a design matrix, β
′
= (µ,G1, P1, P2, FR, FT1 ) is a fixed parameter vector, S

′
= (S 11, . . . , S n11;

S 12, . . . , S n22) is a vector of random subject effects, Z is the corresponding subject effect design matrix,
and ϵ is a error vector. S and ϵ are assumed to be mutually independent with N(0, σ2

sI) and N(0, σ2
eI),

respectively.
Consider the linear transformation HY with HZ , where H is some suitably defined matrix. Since

HY = HXβ +Hϵ (3.2)

the conditional distribution of HY, given mkl(l = 1, 2), is still normal if ϵ is normal and independent
of m′kls. This kind of transformation was used by Fuller and Batesse (1973).

Under model (3.2), we obtain the unbiased estimator P1, P2, FR, FT by considering a special trans-
formation H which is equivalent to taking within-subject differences (between two periods). The
within-subject differences di1k(1 ≤ i ≤ mk1) and di2k(1 ≤ i ≤ mk2) are defined as follows

di11 = Yi11 − Yi21 = P1 − P2 + FR − FT1 + ϵi11 − ϵi21′ , 1 ≤ i ≤ m11,

di21 = Yi21 − Yi31 = P2 − P3 + FT1 − FT2 + ϵi21 − ϵi31′ , 1 ≤ i ≤ m12,

di12 = Yi12 − Yi22 = P1 − P2 + FT2 − FR + ϵi12 − ϵi22′ , 1 ≤ i ≤ m21,

di22 = Yi22 − Yi32 = P2 − P3 + FR − FT1 + ϵi22 − ϵi32′ , 1 ≤ i ≤ m22.
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Let d be the vector of these differences and then d is independent of S and d = HY for some H
satisfying HZ = 0. Assuming that mkl’s are independent of ϵ, we obtain

d ∼ N
(
Wθ, σ2

eG
)
, (3.3)

where

θ
′
=

(
P1 − P2, P2 − P3, FR − FT1 , FR − FT2

)
,

W =



1m12 ⊗
(

1 0 1 0
0 1 −1 1

)
1m11−m12 ⊗

(
1 0 1 0

)
1m22 ⊗

(
1 0 0 −1
0 1 1 0

)
1m21−m22 ⊗

(
1 0 0 −1

)


,

G = diag{Im12 ⊗ B, 2Im11−m12 , Im22 ⊗ B, 2Im11−m22 },

and

B =
(

2 −1
−1 2

)
.

Where ⊗ is the Kronecker product, 1v is the v-vector of ones, Iv is the identity matrix of order v, and
0 is the matrix of 0s of an appropriate order.

Under model (3.3), the maximum likelihood estimator of θ̂ ,

θ̂ =
(
W
′
G−1W

)−1
W
′
G−1d. (3.4)

The estimator of the covariance matrix of θ̂ can be obtained by the least square methods:

σ̂2
e

(
W
′
G−1W

)−1
, (3.5)

where

σ̂2
e =

d
′
[
G−1 −G−1W

(
W

′
G−1W

)−1
W
′
G−1

]
d

m11 + m21 + m12 + m22 − 4
. (3.6)

By using equations (3.4), (3.5), and (3.6) we can then construct an exact confidence interval for
l′θ with a fixed vector l because

l
′
θ̂ − l

′
θ

σ̂2
e

√
l′
(
W′G−1W

)−1
l

has a t-distribution with m11 + m21 + m12 + m22 − 4 degrees of freedom.
From this we can calculate Dunnett’s test (1−2α)×100% confidence intervals for FR−FT1 , FR−FT2

for two drug formulations with the reference one. The bioequivalence among drugs if the calculated
90% simultaneous confidence intervals based on log transformed scale belong to pre-assigned limit
(log 0.8, log 1.25) .
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Table 6: AUC value for Ondansetron example adopted from Lim et al. (2005)

Sequence Period Sequence Period 1 Period 2 Period 3
1 12176 11424 14319
2 10913 12114 11640
3 11004 11802 11234
4 1 14377 15322 14700
5 15110 18308 18598
6 21644 23917 (24176)
7 11367 (10524) (13224)
8 12153 9771 12794
9 14121 12292 18396
10 6339 7860 7907
11 2 20062 17667 23253
12 12306 17170 (15114)
13 19123 (15472) (17058)
14 20043 (15816) (19540)

( ): missing data

4. An illustrative example

Table 6 shows Ondansetron example data given by Lim et al. (2005), but with one sequence deleted.
Ondansetron is used to prevent nausea and vomiting caused by cancer chemotherapy, radiation ther-
apy, anesthesia, and surgery. Ondansetron comes as the brand name drug Zofran and a company
developed generic drugs Vominon 4 mg and Vomonon 8 mg for Zofran. The 21 healthy Korean male
subjects selected from the well defined protocol were randomized and received each formulation. The
plasma concentrations of Ondansetron were monitored by the high performance liquid chromatogra-
phy for over a 12 hour period after administration. In this experiment, all planed-for data are actually
observed and both test drugs were found to be bioequivalent to Zofran. We will use first and second
sequences data. However, pretend that some of the subjects of period 3 in each sequence are dropped
out for the purpose of demonstrating the results.

According to MFDS’s standard on pharmaceutical equivalence test (2018), bioequivalence anal-
ysis should be based on the log-transformed data rather than original one. When the dropouts occur,
the common way is to exclude the corresponding subjects’ data and analyze the bioequivalence study
with the rest of the data. In this case the deletion of subjects with dropouts leads m11 = 6, m12 = 5,
m21 = 5, and m22 = 4. The study loses significant amount of information due to the dropouts and it
may cause to declare bioinequivalence.

The 90% confidence intervals FR − FT1 , FR − FT2 based on the proposed method are

FR − FT1 : (−0.026973, 0.1985201),
FR − FT2 : (−0.091839, 0.1336536).

The confidence intervals are compared to preassigned limit (log 0.8 = −0.22314, log 1.25 =
0.22314) and the tested two drugs are claimed to be bioequivalent with the reference drug since both
intervals given by the proposed method are within this limit. It is noted that the lengths of intervals
based on the proposed method are shorter than ones based on the complete case. Consequently, there
is a minor loss of information due to missing data when the proposed method is applied.

5. Conclusion

When determining the bioequivalence of multiple test drugs and a reference drug, performing several
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separate 2 × 2 crossover trials proves less efficient than performing one higher-order crossover trial
(Lim et al., 2005). We proposed the statistical inference of 2 × 3 crossover design with missing data
to assess the bioequivalence between two generic drugs with the reference drug. The 2 × 3 crossover
design may grant pharmaceutical companies some economical advantages such as benefits from a de-
creased trial duration and a financial expenditure from possible decreased number of subjects required
to demonstrate bioequivalence. This study may be more meaningful and practical as it includes the
statistical procedure and an illustrated example to assess the bioequivalence, especially when missing
data occur during the trial. However, it may be needed to show the efficiencies of the 2 × 3 design
and the method of handling missing data under more general circumstances like the well-designed
simulation studies in further studies.
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