• Title/Summary/Keyword: missile simulation

Search Result 259, Processing Time 0.028 seconds

Study of Simulation Method for Certified Missile Rounds Concepts with Constraints (제약사항을 고려한 보증 유도탄 시뮬레이션 기법 연구)

  • Lee, Kye-Shin;Lee, Youn-Ho;Cho, Yong-Seok;Kim, Hyo-Chang;Kim, Sang-Moon
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.127-138
    • /
    • 2011
  • Certified Missile Round Concepts that is one-shot device use the periodic inspection policy to improve the continuously deteriorated reliability. In this paper, we suggest dormant reliability prediction model by simulation with real operational environment. The suggested prediction model is based on optimal inspection period decision model and additionally considers various constraints; moving, inspection or repair service time. The simulation results show the constraints affect dormant reliability and missile availability. Lastly, we suggest building up a depot to resolve the above problems by the suggested simulation model.

(A Study on the Guided Missile Performance Model and the Development of Visual Environments) (유도무기 살상효과 산정 모델 및 시각 환경의 개발)

  • 황흥석;정덕길
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 1997
  • This research investigates a kill probability model for the performance evaluation of guided missile system, and also develops the user interface implementation for the output of the model based on the visual object-oriented programming application. This paper describes in detail the methodology for the kill probability attained by a missile warhead detonating near an airborne target. The major simulation events used in this research are missile guidance homing point, burst points, and kill mechanism(direct kill, blast kill and fragment kill). For the user interface, we also design and implement the visualization system that can show the graphic style of the kill probability attained by the model. This research will bridge the gap between the sophisticated kill probability model and users who want to see the results interactively with visualization, which can benefit many of other military systems. Some examples are shown, but these will be improved to be better with visual simulation which can visualize all the simulation process of the model.

  • PDF

A Reconfigurable Integration Test and Simulation Bed for Engagement Control Using Virtualization (가상화 기반의 재구성 용이한 교전통제 통합시험시뮬레이션 베드)

  • Kilseok Cho;Ohkyun Jeong;Moonhyung Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.91-101
    • /
    • 2023
  • Modeling and Simulation(M&S) technology has been widely used to solve constraints such as time, space, safety, and cost when we implement the same development and test environments as real warfare environments to develop, test, and evaluate weapon systems for the last several decades. The integration and test environments employed for development and test & evaluation are required to provide Live Virtual Construction(LVC) simulation environments for carrying out requirement analysis, design, integration, test and verification. Additionally, they are needed to provide computing environments which are possible to reconfigure computing resources and software components easily according to test configuration changes, and to run legacy software components independently on specific hardware and software environments. In this paper, an Integration Test and Simulation for Engagement Control(ITSEC) bed using a bare-metal virtualization mechanism is proposed to meet the above test and simulation requirements, and it is applied and implemented for an air missile defense system. The engagement simulation experiment results conducted on air and missile defense environments demonstrate that the proposed bed is a sufficiently cost-effective and feasible solution to reconfigure and expand application software and computing resources in accordance with various integration and test environments.

Numerical simulation of reinforced concrete slabs under missile impact

  • Thai, Duc-Kien;Kim, Seung-Eock
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.455-479
    • /
    • 2015
  • This paper presents a numerical analysis of reinforced concrete slabs under missile impact loading. The specimen used for the numerical simulation was tested by the Technical Research Center of Finland. LS-DYNA, commercial available software, is used to analyze the model. The structural components of the reinforced concrete slab, missile, and their contacts are fully modeled. Included in the analysis is material nonlinearity considering damage and failure. The results of analysis are then verified with other research results. Parametric studies with different longitudinal rebar ratios, shear bar ratios, and concrete strengths are conducted to investigate their influences on the punching behavior of slabs under the impact of a missile. Finally, efficient designs are recommended.

Simulation Analysis of the Neural Network Based Missile Adaptive Control with Respect to the Model Uncertainty (신경회로망 기반 미사일 적응제어기의 모델 불확실 상황에 대한 시뮬레이션 연구)

  • Sung, Jae-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.329-334
    • /
    • 2010
  • This paper presents the design of a neural network based adaptive control for missile. Acceleration of missile by tail fin control cannot be controllable by DMI (Dynamic Model Inversion) directly because it is non-minimum phase system. To avoid the non-minimum phase system, dynamic model inversion is applied with output-redefinition method. In order to evaluate performance of the suggested controllers we selected the three cases such as control surface fail, control surface loss and wing loss for model uncertainty. The corresponding aerodynamic databases to the failure cases were calculated by using the Missile DATACOM. Using a high fidelity 6DOF simulation program of the missile the performance was evaluates.

Study on Effects of Roll in Flight of a Precision Guided Missile for Subsytem Requirements Analysis (구성품 요구 성능 설정을 위한 정밀 유도무기의 비행 중 롤 영향성 연구)

  • Jeong, Dong-Gil;Park, Jin-Seo;Lee, Jong-Hee;Jun, Doo-Sung;Son, Sung-Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2019
  • The operation of the precision-guided missiles with seekers is becoming more and more dominant since the modern wars became geographically localized like anti-terror campaigns and civil wars. Imaging seekers are relatively low-price and applicable to various operational conditions. The image tracker, however, requires highly advanced method for the target tracking under harsh missile flight condition. Missile roll can reduce the tracking performance since it introduces big differences in imagery. The missile roll is inevitable because of the disturbance and flight control error. Consequently, the errors of the subsystems should be under control for the stable performance of the tracker and the whole system. But the performance prediction by some simple metric is almost impossible since the target signature and the tracker are highly nonlinear. We established M&S tool for a precision-guided missile with imaging seeker and analyzed the roll effects to tracking and system performance. Furthermore, we defined the specification of missile subsystems through error analysis to guarantee system performance.

Integrated Roll-Pitch-Yaw Autopilot via Equivalent Based Sliding Mode Control for Uncertain Nonlinear Time-Varying Missile

  • AWAD, Ahmed;WANG, Haoping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.688-696
    • /
    • 2017
  • This paper presents an integrated roll-pitch-yaw autopilot using an equivalent based sliding mode control for skid-to-turn nonlinear time-varying missile system with lumped disturbances in its six-equations of motion. The considered missile model are developed to integrate the model uncertainties, external disturbances, and parameters perturbation as lumped disturbances. Moreover, it considers the coupling effect between channels, the variation of missile velocity and parameters, and the aerodynamics nonlinearity. The presented approach is employed to achieve a good tracking performance with robustness in all missile channels simultaneously during the entire flight envelope without demand of accurate modeling or output derivative to avoid the noise existence in the real missile system. The proposed autopilot consisting of a two-loop structure, controls pitch and yaw accelerations, and stabilizes the roll angle simultaneously. The Closed loop stability is studied. Numerical simulation is provided to evaluate performance of the suggested autopilot and to compare it with an existing autopilot in the literature concerning the robustness against the lumped disturbances, and the aforesaid considerations. Finally, the proposed autopilot is integrated in a six degree of freedom flight simulation model to evaluate it with several target scenarios, and the results are shown.

An Effectiveness Analysis of Anti-Ballisitic Missile Launcher Arrangement for the Lower Tier Defense against the Ballistic Missile (탄도미사일 하층 방어 수행을 위한 발사대 배치 효과도 분석)

  • Kwon, Hyuck-Hoon;Lee, Bum-Seok;Kim, Yoon-Hwan;Choi, Kwan-Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.590-597
    • /
    • 2013
  • For a lower tier defense, the distance between a launcher and an engagement control station is quite important to estimate the proper defense area and to effectively arrange missile launchers. In this paper, we have analyzed an effectiveness of anti-ballistic missile launcher arrangement for the lower tier defense against the ballistic missile. The operation concept, specific configuration and aerodynamic characteristics of the ballistic missile such as SCUD-B/C, Nodong are considered in order to develop a realistic engagement simulation. The diverse engagement results through numerical simulations are provided to conduct the effectiveness analysis of anti-ballistic missiles.

A real time simulation for IR Guided Missile (적외선 유도탄의 실시간 시뮬레이션)

  • Kim, T.Y.;Kim, Y.J.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.421-423
    • /
    • 1993
  • A real time simulation is an effective tool for use in design, performance evaluation, and testing of the vehicle dynamic system. An alternate approach is to use a computer system designed specifically to provide an integrated simulation environment in which all aspects of hardware-in-the-loop simulation task have been taken into account.

  • PDF

A Study On Missile Flight Simulation Method Using the Built-in Memory of Aviation Control Unit (비행제어장치 내장 메모리를 활용한 유도탄 모의비행기법 연구)

  • Kim, Tae-Hoon;Lee, Sang-Hoon;Gong, Min-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.536-544
    • /
    • 2019
  • During the assembly and function inspection of missile system, flight simulation process is required. In the conventional flight simulation check of missiles, an inertial navigation system simulator was used to transmit the navigation output data acquired in HILS. There are several disadvantages in terms of check configuration complexity and data synchronization when using the simulator. So we proposed a new flight simulation method that utilizes the nonvolatile built-in memory of the aviation control unit. The data processing procedure and operation procedure of the proposed method for type I and type II missiles are presented. And we analyzed the causes of the difference between proposed method result and the HILS result for type II missile. By comparing the results obtained by the experiments using the proposed method with the results of HILS, the validity of proposed method was confirmed.