DOI QR코드

DOI QR Code

Numerical simulation of reinforced concrete slabs under missile impact

  • Thai, Duc-Kien (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kim, Seung-Eock (Department of Civil and Environmental Engineering, Sejong University)
  • Received : 2013.09.21
  • Accepted : 2014.07.13
  • Published : 2015.02.10

Abstract

This paper presents a numerical analysis of reinforced concrete slabs under missile impact loading. The specimen used for the numerical simulation was tested by the Technical Research Center of Finland. LS-DYNA, commercial available software, is used to analyze the model. The structural components of the reinforced concrete slab, missile, and their contacts are fully modeled. Included in the analysis is material nonlinearity considering damage and failure. The results of analysis are then verified with other research results. Parametric studies with different longitudinal rebar ratios, shear bar ratios, and concrete strengths are conducted to investigate their influences on the punching behavior of slabs under the impact of a missile. Finally, efficient designs are recommended.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. Daudeville, L. and Malecot, Y. (2011), "Concrete structures under impact", Eur. J. Environ. Civil Eng., 15(SI), 101-140. https://doi.org/10.1080/19648189.2011.9695306
  2. EN 1992-1-1 (2004), Eurocode 2, Design of concrete structure-Part 1-1: General rules and rules for buildings, Brussels.
  3. fib MC2010 (2013), fib Model Code for Concrete Structures 2010, Ernst & Sohn Publishing House, Berlin, Germany.
  4. Jones, N. (2012), Structural Impact, Second Edition, Cambridge Univerity Press, New York, NY, USA.
  5. Lastunen, A., Hakola, I., Jarvinen, E., Calonius, K. and Hyvarinen, J. (2007), "Impact test facility", Transactions of the 19th SMiRT, Toronto, Canada, August.
  6. LS-DYNA (2007), Key User's Manual, Version 971, Livermore Software Technology Corporation, California, USA.
  7. Marais, S.T., Tait, R.B., Cloete, T.J. and Nurick, G.N. (2004), "Material test at high strain rate using the split Hopkinson pressure bar", Lat. Am. J. Solid. Struct., 1, 319-339.
  8. Martin, O., Centro, V. and Schwoertzig, T. (2012), "Finite element analysis on the Meppen-II-4 slab test", Nucl. Eng. Des., 247, 1-10. https://doi.org/10.1016/j.nucengdes.2012.02.001
  9. Martin, O., Centro, V. and Schwoertzig, T. (2012), "Finite element analysis on the VTT-IRSN flexural failure test", Nucl. Eng. Des., 252, 88-95. https://doi.org/10.1016/j.nucengdes.2012.07.015
  10. Nilson, A.H., Darwin, D. and Dolan, C.W. (2010), Design of Concrete Structures, Fourteenth Edition, Mc Graw Hill, New York, NY, USA.
  11. Polanco-Loria, M., Hopperstad, O.S., Brvik, T. and Berstad, T. (2008), "Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model", Int. J. Impact Eng., 35, 290-303. https://doi.org/10.1016/j.ijimpeng.2007.03.001
  12. Saarenheimo, A., Tuomala, M., Calonius, K., Hakola, I., Hostikka, S. and Silde, A. (2009), "Experimental and numerical studies on projectile impacts", J. Struct. Mech., 42(1), 1-37.
  13. Sagals, G., Orbovic, N. and Blahoianu, A. (2011), "Sensitivity studies of reinforced concrete slabs under impact loading", Transactions of the 21st SMiRT, New Delhi, India, November.
  14. Schwer, L. (2010), An Introduction to the Winfrith Concrete Model, Schwer Engineering & Consulting Services, California, USA.
  15. Shiu, W., Donze, F.V. and Daudeville, L. (2009), "Influence of the reinforcement on penetration and perforation of concrete targets-a discrete element analysis", Int. J. Comput. Aid. Eng. Softw., 16(1), 29-45.
  16. Tuomala, M., Calonius, K., Saarenheimo, A. and Valikangas, P. (2010), "Hard missile impact on prestressed shear reinforced slab", J. Disast. Res., 5(4), 437-451. https://doi.org/10.20965/jdr.2010.p0437
  17. Vepsa, A., Saarenheimo, A., Tarallo, F., Rambach, J.M. and Orbovic, N. (2011), "IRIS_2010-Part II: Experiment data", Transactions of the 21st SMiRT, New Delhi, India, November.
  18. Zineddin, M. and Krauthammer, T. (2007), "Dynamic response and behavior of reinforced concrete slabs under impact loading", Int. J. Impact Eng., 34, 1517-1534. https://doi.org/10.1016/j.ijimpeng.2006.10.012

Cited by

  1. Prediction of UHPFRC panels thickness subjected to aircraft engine impact vol.5, 2016, https://doi.org/10.1016/j.csse.2016.03.003
  2. Modified empirical formulas for predicting the thickness of RC panels under impact loading vol.169, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2018.02.211
  3. Effect of rebar spacing on the behavior of concrete slabs under projectile impact vol.77, pp.3, 2015, https://doi.org/10.12989/sem.2021.77.3.329
  4. Optimization strategies of neural networks for impact damage classification of RC panels in a small dataset vol.102, pp.None, 2015, https://doi.org/10.1016/j.asoc.2021.107100
  5. Damage potential: A dimensionless parameter to characterize soft aircraft impact into robust targets vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.031