• 제목/요약/키워드: minimum-time maneuver

검색결과 25건 처리시간 0.037초

Minimum-Time Attitude Reorientations of Three-Axis Stabilized Spacecraft Using Only Magnetic Torquers

  • Roh, Kyoung-Min;Park, Sang-Young;Choi, Kyu-Hong;Lee, Sang-Uk
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.17-27
    • /
    • 2007
  • Minimum-time attitude maneuvers of three-axis stabilized spacecraft are presented to study the feasibility of using three magnetic torquers perform large angle maneuvers. Previous applications of magnetic torquers have been limited to spin-stabilized satellites or supplemental actuators of three axis stabilized satellites because of the capability of magnetic torquers to produce torques about a specific axes. The minimum-time attitude maneuver problem is solved by applying a parameter optimization method for orbital cases to verify that the magnetic torque system can perform as required. Direct collocation and a nonlinear programming method with a constraining method by Simpson's rule are used to convert the minimum-time maneuver problems into parameter optimization problems. An appropriate number of nodes is presented to find a bang-bang type solution to the minimum-time problem. Some modifications in the boundary conditions of final attitude are made to solve the problem more robustly and efficiently. The numerical studies illustrate that the presented method can provide a capable and robust attitude reorientation by using only magnetic torquers. However, the required maneuver times are relatively longer than when thrusters or wheels are used. Performance of the system in the presence of errors in the magnetometer as well as the geomagnetic field model still good.

유연한 arm의 1축 회전 기동을 위한 강인성 제어기 설계 (Robust controller design for the rotational maneuver of a flexible arm)

  • 방효충;박영웅;남문경;황보한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1322-1325
    • /
    • 1997
  • A new feedback control law design techniqed usign of-off thrusters for the rotational maneuver of a flexible arm is discussed in this study. a two state on-off thruster actuator is taken as a primary actuation device for theis study. The on-off thruster operation is emulated in conjunction with the conventioal minimum-time trackig control law. The actuator input region is divided into two separate parts ; one is constant input and the other is time varying tegion. the new control law has potential applicatioin for the relatively low frequency structure such as large flexible space structure being currently used in various space echnology areas.

  • PDF

Time Optimal Attitude Maneuver Strategies for the Agile Spacecraft with Reaction Wheels and Thrusters

  • Lee Byung-Hoon;Lee Bong-Un;Oh Hwa-Suk;Lee Seon-Ho;Rhee Seung-Wu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1695-1705
    • /
    • 2005
  • Reaction wheels and thrusters are commonly used for the satellite attitude control. Since satellites frequently need fast maneuvers, the minimum time maneuvers have been extensively studied. When the speed of attitude maneuver is restricted due to the wheel torque capacity of low level, the combinational use of wheel and thruster is considered. In this paper, minimum time optimal control performances with reaction wheels and thrusters are studied. We first identify the features of the maneuvers of the satellite with reaction wheels only. It is shown that the time-optimal maneuver for the satellite with four reaction wheels in a pyramid configuration occurs on the fashion of single axis rotation. Pseudo control logic for reaction wheels is successfully adopted for smooth and chattering-free time-optimal maneuvers. Secondly, two different thrusting logics for satellite time-optimal attitude maneuver are compared with each other: constant time-sharing thrusting logic and varying time-sharing thrusting logic. The newly suggested varying time-sharing thrusting logic is found to reduce the maneuvering time dramatically. Finally, the hybrid control with reaction wheels and thrusters are considered. The simulation results show that the simultaneous actuation of reaction wheels and thrusters with varying time-sharing logic reduces the maneuvering time enormously. Spacecraft model is Korea Multi-Purpose Satellite (KOMPSAT)-2 which is being developed in Korea as an agile maneuvering satellite.

On the 3-dimensional low speed yo-yo maneuver

  • Takano, Hiroyuki;Sato, Masaya;Baba, Yoriaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.653-658
    • /
    • 1994
  • This paper presents numerical analyses of the low speed yo-yo maneuver of an aircraft to determine controls of thrust, bank-angle and angle-of-attack in the subsonic region in terms of the optimal control theory. Minimum-time flight paths are numerically calculated to overtake an opponent aircraft flying in some steady-state level turnings under several assumptions: both of aircraft are point masses and maneuver in the 3-Dimensional space. Their weights are considered constant in the maneuver. As a result of the analyses, the effectiveness of the low speed yo-yo maneuver is shown.

  • PDF

An effective method for detecting satellite orbital maneuvers and its application to LEO satellites

  • Ashurov, Abdikul E.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권4호
    • /
    • pp.279-300
    • /
    • 2022
  • This paper analyzes the possibilities of a new method to using TLE data for detecting satellite maneuvers. The method has a number of advantages over other methods that are designed to detect maneuvers. It allows not only to detect maneuvers, but also to get a more complete picture of the maneuver. In particular, the method makes it possible to estimate the moments of the beginning and end of the maneuver, calculate the changes in the orbital elements, evaluate the tangential and binormal components of the impulse, and finally, calculate the impulse of the satellite obtained as a result of the maneuver. To demonstrate in detail the capabilities of the algorithm, the proposed method was applied to one of LEO satellites - TIANHUI-1 satellite. After the efficiency of the method was proved, this method was applied to the China Space Station - TIANHE-1 (CSS), Starlink-1095 and Starlink-2305 satellites. The maneuvers of the CSS and Starlink-1095 satellite during their close encounter on 1 July, 2021, and the CSS and Starlink-2305 satellite during their close encounter on 21 October, 2021 are analyzed in detail. The minimum distances between the CSS and Starlink satellites at the moments of their maximum approaches are estimated. An estimate of the computation time of this algorithm is given, and the possibility of its use for monitoring maneuvers or other anomalous orbital changes of a large number of satellites in near real-time is shown. It is assumed that on the basis of this method, a service for monitoring satellite maneuvers can be created.

Trajectory Optimization Operations for Satellites in Elliptic Orbits

  • Won, Chang-Hee;Mo, Hee-Sook;Kim, In-Jun;Lee, Seong-Pal
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.238-243
    • /
    • 1999
  • Minimum-fuel and -time orbit transfer are two major goals of the satellite trajectory optimization. In this paper, we consider satellites in two coplanar elliptic orbits when the apsidal lines coincide, and analytically find the conditions for the two-impulse minimum-time transfer orbit using Lambert's theorem. The transfer time is a decreasing function of a variable related to the transfer orbit's semimajor axis in the minimum-time case. In the minimum-time case, there is no unique minimum-time solution, but there is a limiting solution. However, there exists a unique solution in the case of minimum-fuel transfer, fur which we find analytically the necessary and sufficient conditions. As a special case, we consider when the transfer angle is one hundred and eighty degrees. In this case, we show that we obtain the classical fuel-optimal Hohmann transfer orbit. We also derive the Hohmann transfer rime and delta-velocity equations from more general equations, which are obtained using Lambert's theorem. We note the tradeoff between minimum-time and - fuel transfer. An optimal coplanar orbit maneuver algorithm to trade off the minimum-time goal against the minimum-fuel goal is proposed. Finally, the numerical simulation results are given to demonstrate the derived theory and the algorithm.

  • PDF

Tracking Filter Design for a Maneuvering target Using Jump Processes

  • Lim, Sang-Seok
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권3호
    • /
    • pp.373-384
    • /
    • 1998
  • This paper presents a maneuvering target model with the maneuver dynamics modeled as a jump process of Poisson-type. The jump process represents the deterministic maneuver(or pilot commands) and is described by a stochastic differential equation driven by a Poisson process taking values a set of discrete states. Employing the new maneuver model along with the noisy observations described by linear difference equations, the author has developed a new linear, recursive, unbiased minimum variance filter, which is structurally simple, computationally efficient, and hence real-time implementable. Futhermore, the proposed filter does not involve a computationally burdensome technique to compute the filter gains and corresponding covariance matrices and still be able to track effectively a fast maneuvering target. The performance of the proposed filter is assessed through the numerical results generated from the Monte-Carlo simulation.

  • PDF

Time Optimal Attitude Maneuver of Three-Axis Spacecraft with only Magnetic Toquer

  • K.M. Roh;Park, K.H.;Kim, J.H.;Lee, Sanguk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.92.2-92
    • /
    • 2001
  • This paper presents the time optimal reorientation solution of three-axis spacecraft which has only three magnetic torquers. It has been very difficult problem because the magnetic torquer generates only perpendicular to Earth magnetic field vector. In this paper, minimum-time solution using only magnetic torquer is solved using collocation method and nonlinear programming solver NPSOL. IGRF Earth magnetic field model used to simulate magnetic field. The result is verified by comparing to the result of numerical integration. The solution is obtained for the various reorientation maneuver of three axes rigid spacecraft. And the results show that all three axes of rigid spacecraft are controlled effectively only by magnetic torqure.

  • PDF

운전자 주행 특성 모사를 위한 트랙 한계 자율 주행 차량의 거동 계획 알고리즘 (Motion Planning of Autonomous Racing Vehicles for Mimicking Human Driver Characteristics)

  • 김창희;이경수
    • 자동차안전학회지
    • /
    • 제16권1호
    • /
    • pp.6-11
    • /
    • 2024
  • This paper presents a motion planning algorithm of autonomous racing vehicles for mimicking the characteristics of a human driver. Time optimal maneuver of a race car has been actively studied as a major research area over the past decades. Although the time optimization problem yields a single time series solution of minimum time maneuver inputs for the vehicle, human drivers achieve similar lap times while taking various racing lines and velocity profiles. In order to model the characteristics of a specific driver and reproduce the motion, a stochastic motion planning framework based on kernelized motion primitive is introduced. The proposed framework imitates the behavior of the generated reference motion, which is based on a small number of human demonstration laps along the racetrack using Gaussian mixture model and Gaussian mixture regression. The mean and covariance of the racing line and velocity profile mimicking the driver are obtained by accumulating the outputs tested at equidistantly sampled input points. The results confirmed that the obtained lateral and longitudinal motion simulates the driver's driving characteristics, which are feasible for actual vehicle test environments.