• Title/Summary/Keyword: minimum-cost assignment

Search Result 34, Processing Time 0.027 seconds

Channel Assignment Sequence Optimization Under Fixed Channel Assignment Scheme (채널 고정 할당 방식 이동통신 시스템에서 채널 할당 순서 최적화)

  • Han, Jung-Hee
    • Journal of Information Technology Services
    • /
    • v.9 no.2
    • /
    • pp.163-177
    • /
    • 2010
  • In this paper, we consider a channel ordering problem that seeks to maximize the service quality in mobile radio communication systems. If a base station receives a connection request from a mobile user, one of the empty channels belonging to the base station is assigned to the mobile user. In case multiple empty channels are available, we can choose one that incurs least interference with other channels assigned to adjacent base stations. However, note that a pair of channels that are not separated enough generates interference only if both channels are assigned to mobile users. That is, interference between channels may vary depending on the channel assignment sequence for each base station and on the distribution of mobile users. To find a channel assignment sequence that seems to generate minimum interference, we develop an optimization model considering various scenarios of mobile user distribution. Simulation results show that channel assignment sequence determined by the scenario based optimization model significantly reduces the interference provided that scenarios and interference cost are properly generated.

A Branch-and-price Algorithm for the Minimum ADM Problem on WDM Ring Networks (WDM 링에서의 ADM 최소화 문제에 대한 분지평가 해법)

  • Chung, Ji-Bok
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.4
    • /
    • pp.51-60
    • /
    • 2007
  • In this study, we consider the minimum ADM problem which is the fundamental problem for the cost-effective design of SONET ADM embedded in WDM ring networks. To minimize the number of SONET ADMs, efficient algorithms for the routing and wavelength assignment are needed. We propose a mathematical model based on the graph theory for the problem and propose a branch-and-price approach to solve the suggested model effectively within reasonable time. By exploiting the mathematical structure of ring networks, we developed polynomial time algorithms for column generation subroutine at branch-and-bound tree. In a computer simulation study, the suggested approach can find the optimal solution for sufficient size networks and shows better performance than the greedy heuristic method.

Test Sequence Generation Using Multiple Unique State Signature(MUSS)

  • Jung, Yoon-Hee;Hong, Beom-Kee
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.43-47
    • /
    • 1997
  • A procedure presented in this paper generates test sequences to check the conformity of an implementation with a protocol specification, which is modeled as a deterministic finite state machine (FSM). Given a FSM, a common procedure of test sequence generation, first, constructs a directed graph which edges include the state check after each transition, and produces a symmetric graph G* from and, finally, finds a Euler tour of G*. We propose a technique to determine a minimum-cost tour of the transition graph of the FSM. The proposed technique using Multiple Unique State Signature (MUSS) solves an open issue that one MUIO sequence assignment may lead to two more edges of unit cost being replicated to from G* while an optimal assignment may lead to the replication of a single edge of high cost. In this paper, randomly generated FSMs have been studied as test cases. The result shows that the proposed technique saves the cost 4∼28% and 2∼21% over the previous approach using MUIO and MUSP, respectively.

  • PDF

An Efficient Algorithm for Partial Scan Designs (효율적인 Partial Scan 설계 알고리듬)

  • Kim, Yun-Hong;Shin, Jae-Heung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.210-215
    • /
    • 2004
  • This paper proposes an implicit method for computing the minimum cost feedback vertex set for a graph. For an arbitrary graph, a Boolean function is derived, whose satisfying assignments directly correspond to feedback vertex sets of the graph. Importantly, cycles in the graph are never explicitly enumerated, but rather, are captured implicitly in this Boolean function. This function is then used to determine the minimum cost feedback vertex set. Even though computing the minimum cost satisfying assignment for a Boolean function remains an NP-hard problem, it is possible to exploit the advances made in the area of Boolean function representation in logic synthesis to tackle this problem efficiently in practice for even reasonably large sized graphs. The algorithm has obvious application in flip-flop selection for partial scan. The algorithm proposed in this paper is the first to obtain the MFVS solutions for many benchmark circuits.

Hierarchical Cellular Network Design with Channel Allocation Using Genetic Algorithm (유전자 알고리즘을 이용한 다중계층 채널할당 셀룰러 네트워크 설계)

  • Lee, Sang-Heon;Park, Hyun-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.321-333
    • /
    • 2005
  • With the limited frequency spectrum and an increasing demand for cellular communication services, the problem of channel assignment becomes increasingly important. However, finding a conflict free channel assignment with the minimum channel span is NP hard. As demand for services has expanded in the cellular segment, sever innovations have been made in order to increase the utilization of bandwidth. The innovations are cellular concept, dynamic channel assignment and hierarchical network design. Hierarchical network design holds the public eye because of increasing demand and quality of service to mobile users. We consider the frequency assignment problem and the base station placement simultaneously. Our model takes the candidate locations emanating from this process and the cost of assigning a frequency, operating and maintaining equipment as an input. In addition, we know the avenue and demand as an assumption. We propose the network about the profit maximization. This study can apply to GSM(Global System for Mobile Communication) which has 70% portion in the world. Hierarchical network design using GA(Genetic Algorithm) is the first three-tier (Macro, Micro, Pico) model, We increase the reality through applying to EMC (Electromagnetic Compatibility Constraints). Computational experiments on 72 problem instances which have 15${\sim}$40 candidate locations demonstrate the computational viability of our procedure. The result of experiments increases the reality and covers more than 90% of the demand.

  • PDF

Evaluation of Train Capacity Pattern Considering Customer Demands (고객수요를 고려한 열차용량패턴에 관한 연구)

  • Kim Dong-Hee;Kim Seong-Ho;Hong Sun-Heum
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.507-513
    • /
    • 2004
  • In the railway system, transportation plan corresponds to a m aster plan for transport services. This service plan must be constructed to minimize operational cost or maximize revenue considering transportation demands and resource capacities in the railway operation company, and it includes several sub-planning activities such as train operation frequency plan, train (schedule) plan, train capacity assignment plan, and rolling stock requirement plan. In these sub- planning processes, train can be con side red as a product for providing customer services, and customer demands and operational advantages must be considered. In this paper, we present an effect estimation system for the train capacity pattern in a train schedule, and the effect of capacity pattern can be expressed as minimum spilled demand, minimum train service cost, and maximum train revenue or profit.

  • PDF

Optimum Scheduling Algorithm for Job Sequence, Common Due Date Assignment and Makespan to Minimize Total Costs for Multijob in Multimachine Systems (다수(多数) 기계(機械)의 총비용(總費用)을 최소화(最小化)하는 최적작업순서, 공통납기일 및 작업완료일 결정을 위한 일정계획(日程計劃))

  • No, In-Gyu;Kim, Sang-Cheol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 1986
  • This research is concerned with n jobs, m parallel identical machines scheduling problem in which all jobs have a common due date. The objective of the research is to develop an optimum scheduling algorithm for determining an optimal job sequence, the optimal value of the common due date and the minimum makespan to minimize total cost. The total cost is based on the common due date cost, the earliness cost, the tardiness cost and the flow time cost of each job in the selected sequence. The optimum scheduling algorithm is developed. A numerical example is given to illustrate the scheduling algorithm.

  • PDF

An Online Forklift Dispatching Algorithm Based on Minimal Cost Assignment Approach (최소 비용할당 기반 온라인 지게차 운영 알고리즘)

  • kwon, BoBae;Son, Jung-Ryoul;Ha, Byung-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.71-81
    • /
    • 2018
  • Forklifts in a shipyard lift and transport heavy objects. Tasks occur dynamically and the rate of the task occurrence changes over time. Especially, the rate of the task occurrence is high immediately after morning and afternoon business hours. The weight of objects varies according to task characteristic, and a forklift also has the workable or allowable weight limit. In this study, we propose an online forklift dispatching algorithm based on nearest-neighbor dispatching rule using minimal cost assignment approach in order to attain the efficient operations. The proposed algorithm considers various types of forklift and multiple jobs at the same time to determine the dispatch plan. We generate dummy forklifts and dummy tasks to handle unbalance in the numbers of forklifts and tasks by taking their capacity limits and weights. In addition, a method of systematic forklift selection is also devised considering the condition of the forklift. The performance indicator is the total travel distance and the average task waiting time. We validate our approach against the priority rule-based method of the previous study by discrete-event simulation.

A Traffic Assignment Model in Multiclass Transportation Networks (교통망에서 다차종 통행을 고려하는 통행배정모형 수립)

  • Park, Koo-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.3
    • /
    • pp.63-80
    • /
    • 2007
  • This study is a generalization of 'stable dynamics' recently suggested by Nesterov and de Palma[29]. Stable dynamics is a new model which describes and provides a stable state of congestion in urban transportation networks. In comparison with user equilibrium model that is common in analyzing transportation networks, stable dynamics requires few parameters and is coincident with intuitions and observations on the congestion. Therefore it is expected to be an useful analysis tool for transportation planners. An equilibrium in stable dynamics needs only maximum flow in each arc and Wardrop[33] Principle. In this study, we generalize the stable dynamics into the model with multiple traffic classes. We classify the traffic into the types of vehicle such as cars, buses and trucks. Driving behaviors classified by age, sex and income-level can also be classes. We develop an equilibrium with multiple traffic classes. We can find the equilibrium by solving the well-known network problem, multicommodity minimum cost network flow problem.

An Improved Particle Swarm Optimization Algorithm for Care Worker Scheduling

  • Akjiratikarl, Chananes;Yenradee, Pisal;Drake, Paul R.
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.171-181
    • /
    • 2008
  • Home care, known also as domiciliary care, is part of the community care service that is a responsibility of the local government authorities in the UK as well as many other countries around the world. The aim is to provide the care and support needed to assist people, particularly older people, people with physical or learning disabilities and people who need assistance due to illness to live as independently as possible in their own homes. It is performed primarily by care workers visiting clients' homes where they provide help with daily activities. This paper is concerned with the dispatching of care workers to clients in an efficient manner. The optimized routine for each care worker determines a schedule to achieve the minimum total cost (in terms of distance traveled) without violating the capacity and time window constraints. A collaborative population-based meta-heuristic called Particle Swarm Optimization (PSO) is applied to solve the problem. A particle is defined as a multi-dimensional point in space which represents the corresponding schedule for care workers and their clients. Each dimension of a particle represents a care activity and the corresponding, allocated care worker. The continuous position value of each dimension determines the care worker to be assigned and also the assignment priority. A heuristic assignment scheme is specially designed to transform the continuous position value to the discrete job schedule. This job schedule represents the potential feasible solution to the problem. The Earliest Start Time Priority with Minimum Distance Assignment (ESTPMDA) technique is developed for generating an initial solution which guides the search direction of the particle. Local improvement procedures (LIP), insertion and swap, are embedded in the PSO algorithm in order to further improve the quality of the solution. The proposed methodology is implemented, tested, and compared with existing solutions for some 'real' problem instances.