• Title/Summary/Keyword: minimum-cost assignment

Search Result 34, Processing Time 0.024 seconds

An Assignment Problem Algorithm Using Minimum Cost Moving Method

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.105-112
    • /
    • 2015
  • Generally, the optimal solution of assignment problem has been obtained by Hungarian algorithm with O($n^3$) time complexity. This paper proposes more simple algorithm with O($n^2$) time complexity than Hungarian algorithm. The proposed algorithm simply selects minimum cost in each row, and classified into set S, H, and T. Then, the minimum cost is moved from S to T and $S{\rightarrow}H$, $H{\rightarrow}T$. The proposed algorithm can be obtain the same optimal solution as well-known algorithms and improve the optimal solution of partial unbalanced assignment problems.

AThe Simplified Solution for Assignment Problem (할당 문제의 단순한 해법)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.141-151
    • /
    • 2012
  • This paper suggests more simple algorithm than Hungarian algorithm for assignment problem. Hungarian algorithm selects minimum cost of row and column, and subtracts minimum cost from each cost. Then, performs until the number of minimum lines with 0 equals the number of rows. But, the proposed algorithm selects the minimum cost for each rows only. From the start point with over 2 to the target point with null selects in column, fixes the maximum opportunity cost that the difference of the cost of starting point and target point, and moves the cost less than opportunity cost th more than previous cost. For the 25 balance and 7 unbalance assignment problems, This algorithm gets the optimal solution same as Hungarian algorithm. This algorithm improves the time complexity $O(n^3)$ of Hungarian algorithm to $O(n^2)$, and do not performs the transformation process from unbalance to balance assignment in Hungarian algorithm. Therefore, this algorithm can be alter Hungarian algorithm in assignment problem.

An Linear Bottleneck Assignment Problem (LBAP) Algorithm Using the Improving Method of Solution for Linear Minsum Assignment Problem (LSAP)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.131-138
    • /
    • 2016
  • In this paper, we propose a simple linear bottleneck assignment problems (LBAP) algorithm to find the optimal solution. Generally, the LBAP has been solved by threshold or augmenting path algorithm. The primary characteristic of proposed algorithm is derived the optimal solution of LBAP from linear sum assignment problem (LSAP). Firstly, we obtains the solution for LSAP from the selected minimum cost of rows and moves the duplicated costs in row to unselected row with minimum increasing cost in direct and indirect paths. Then, we obtain the optimal solution of LBAP according to the maximum cost of LSAP can be move to less cost. For the 29 balanced and 7 unbalanced problem, this algorithm finds optimal solution as simple.

Assignment Problem Algorithm Based on the First Selection Method of the Minimum Cost (최소비용 우선선택 방법에 기반한 할당 문제 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.163-171
    • /
    • 2013
  • This paper proposes an algorithm that seeks the optimal solution for an assignment problem through a simplified process. Generally it is Hungarian algorithm that is prevalently used to solve a given assignment problem. The proposed algorithm reduces 4 steps Hungarian algorithm into 2 steps. Firstly, the algorithm selects the minimum cost from a matrix and deletes the rest of the rows and columns. Secondly, it improves on the solution through reassignment process. For 27 balanced assignment problems and 7 unbalanced problems, the proposed algorithm has successfully yielded the optimal solution, which Genetic algorithm has failed. This algorithm is thus found to be an appropriate replacement of Hungarian algorithm.

One-Sided Optimal Assignment and Swap Algorithm for Two-Sided Optimization of Assignment Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.75-82
    • /
    • 2015
  • Generally, the optimal solution of assignment problem can be obtained by Hungarian algorithm of two-sided optimization with time complexity $O(n^4)$. This paper suggests one-sided optimal assignment and swap optimization algorithm with time complexity $O(n^2)$ can be achieve the goal of two-sided optimization. This algorithm selects the minimum cost for each row, and reassigns over-assigned to under-assigned cell. Next, that verifies the existence of swap optimization candidates, and swap optimizes with ${\kappa}-opt({\kappa}=2,3)$. For 27 experimental data, the swap-optimization performs only 22% of data, and 78% of data can be get the two-sided optimal result through one-sided optimal result. Also, that can be improves on the solution of best known solution for partial problems.

The Optimal Algorithm for Assignment Problem (할당 문제의 최적 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.139-147
    • /
    • 2012
  • This paper suggests simple search algorithm for optimal solution in assignment problem. Generally, the optimal solution of assignment problem can be obtained by Hungarian algorithm. The proposed algorithm reduces the 4 steps of Hungarian algorithm to 1 step, and only selects the minimum cost of row and column then gets the optimal solution simply. For the 27 balanced and 7 unbalanced assignment problems, this algorithm finds the optimal solution but the genetic algorithm fails to find this values. This algorithm improves the time complexity O($n^3$) of Hungarian algorithm to O(n). Therefore, the proposed algorithm can be general algorithm for assignment problem replace Hungarian algorithm.

The MCSTOP Algorithm about the Minimum Cost Spanning Tree and the Optimum Path Generation for the Multicasting Path Assignment (최적 경로 생성 및 최소 비용 신장 트리를 이용한 멀티캐스트 경로 배정 알고리즘 : MCSTOP)

  • Park, Moon-Sung;Kim, Jin-Suk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.4
    • /
    • pp.1033-1043
    • /
    • 1998
  • In this paper, we present an improved multicasting path assignment algorithm based on the minimum cost spanning tree. In the method presented in this paper, a multicasting path is assigned preferentially when a node to be received is found among the next degree nodes of the searching node in the multicasting path assignment of the constrained steiner tree (CST). If nodes of the legacy group exist between nodes of the new group, a new path among the nodes of new group is assigned as long as the nodes may be excluded from the new multicasting path assignment taking into consideration characteristics of nodes in the legacy group. In assigning the multicasting path additionally, where the source and destination nodes which can be set for the new multicasting path exist in the domain of identical network (local area network) and conditions for degree constraint are satisfied, a method of producing and assigning a new multicasting path is used. The results of comparison of CST with MCSTOP, MCSTOp algorithm enhanced performance capabilities about the communication cost, the propagation delay, and the computation time for the multicasting assignment paths more than CST algorithm. Further to this, research activities need study for the application of the international standard protocol(multicasting path assignment technology in the multipoint communication service (MCS) of the ITU-T T.120).

  • PDF

Design of a hospital assignment scheme for ambulances based on minimum cost maximum flow algorithm (최소비용 최대유량 알고리즘에 기반한 구급차의 환자이송 병원 배정 기법의 설계)

  • Junghoon Lee
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.72-80
    • /
    • 2023
  • This paper presents a design and analyzes the performance of a hospital assignment and reassignment scheme for emergency rescue services based on minimum cost maximum flow algorithm. It consists of flow graph building, link capacity updating, and allocation discovering steps. The efficiency of the algorithm makes it possible to reallocate hospitals even in case of dynamic changes in the number of patients or hospitals. The performance measurement result obtained from a prototype implementation shows that the proposed scheme can reduce the transport time requirement miss by up to 24%.

A Study on the Mathematical Equivalence and $\varepsilon$-Relaxation of Auction Algorithm for PCB Design (PCB 설계를 위한 Auction 알고리즘의 수학적 등가와 $\varepsilon$-이완법에 관한 연구)

  • 우경환;이용희;임태영;이천희
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.213-216
    • /
    • 2000
  • Minimum-cost linear network flow problems could be transformed with equal to assignment problems. Traditional method to solve the linear network flow problems are improved source-cost by transform the simple cycle flow. Auction algorithm could be applied to same element using the initial target price and dispersion calculation. Also, each elements are obtained by $\varepsilon$-relaxation methods. In this paper we proposed; 1)minimum-cost flow problem, 2)minimum-cost flow problem by the mathematical equivalent and 3) extraction $\varepsilon$-relaxation & expand transfer problem with minimum-cost flow. It can be applicant to PCB design by above mentioned.

  • PDF

Assignment-Change Optimization for the Problem of Bid Evaluation (입찰 평가 문제의 배정-변경 최적화)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.171-176
    • /
    • 2021
  • This paper deals with bid evaluation problem that chooses the vendors and quantity with minimum purchasing cost for bid information of setup cost and unit price. For this problem, the branch-and-bound(BB) and branch-and-cut(BC) methods are well-known. But these methods can be fail to obtain the optimal solution. This paper gets the initial feasible solution with procuring quantity assignment principle in accordance with the unit price or setup cost rank-first. Then procuring quantity moving optimization(vendor change) is execute take account of unit price or setup cost rank. As a result of experimentation, the propose algorithm is significantly lower compared to BB and BC.