• Title/Summary/Keyword: minimum thickness

Search Result 758, Processing Time 0.022 seconds

An Implementation of Fuzzy Automatic Gauge Control for the Plate Steel Rolling Process (후판 압연공정에서 퍼지 두께제어 구현)

  • Hur, Yone-Gi;Choi, Young-Kiu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.634-640
    • /
    • 2009
  • The plate manufacturing processes are composed of the reheating furnace, finishing mill, cooling process and hot leveling. The finishing rolling mill (FM) as a reversing mill has produced the plate steel through multiple pass rolling. The automatic gauge control (AGC) is employed to maintain the thickness tolerance. The high grade products are forming greater parts of the manufacturing and customers are requiring strict thickness margin. For this reason, the advanced AGC method is required instead of the conventional AGC based on the PI control. To overcome the slow response performance of the conventional AGC and the thickness measurement delay, a fuzzy AGC based on the thickness deviation and its trend is proposed in this paper. An embedded controller with the fuzzy AGC has been developed and implemented at the plate mill in POSCO. The fuzzy AGC has dynamically controlled the roll gap in real time with the programmable logic controller (PLC). On line tests have been performed for the general and TMCP products. As the results, the thickness deviation range (maximum - minimum of the inner plate) is averagely from 0.3 to 0.1 mm over the full length. The fuzzy AGC has improved thickness deviation and completely satisfied customer needs.

Evaluation of Local Allowable Wall Thickness of Thinned Pipe Subjected to Internal Pressure and Bending Moment (내압과 굽힘하중하에서 감육배관의 국부허용두께 평가)

  • Kim, Jin-Won;Park, Chi-Yong;Kim, Beom-Nyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.81-88
    • /
    • 2001
  • This study proposed an analytical method to evaluate a local allowable wall thickness (LAWT) for locally thinned pipe subjected to internal pressure and bending moment. In this method, the stresses in the thinned region were calculated by finite element analysis and plastic collapse was applied as a failure criterion of thinned pipe. Using this method, LAWT for a simplified thinned pipe was evaluated with variation in axial extent of thinned area, and it was compared with allowable wall thickness provided by previous pipe wall thickness criteria. The results showed that the LAWT was lower, about 50%, than that calculated by construction code or ASME Code N-597, and it was higher, about 2 times, than that estimated by evaluation model based on pipe experiments. In addition, LAWT was decreased with increasing axial extent of thinned area and saturated with further increase in axial extent. And, the variation in LAWT with axial extent of thinned area depended on type of load, especially a magnitude of bending moment, considering in the evaluation.

Change of the Cement Mantle Thickness According to the Movement of the Femoral Stem in THRA (인공고관절 치환술에서 대퇴주대 회전에 따른 시멘트막 두께 변화)

  • Park, Yong-Kuk;Kim, Jin-Gon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.140-148
    • /
    • 2007
  • THRA(Total Hip Replacement Arthroplasty) has been widely used for several decades as a viable treatment of otherwise-unsolved hip problems. In THRA surgery, cement mantle thickness is critical to long-term implant survival of femoral stem fixed with cement. Numerous studies reported thin or incomplete cement mantle causes osteolysis, loosening, and the failure of implant. To analyze the effect of femoral stem rotation on cement thickness, in this study, we select two most popular stems used in THRA. Using CAD models obtained from a 3D scanner, we measure the cement mantle thickness developed by the rotation of a femoral stem in the virtual space created by broaching. The study shows that as the femoral stem deviates from the target coordinates, the minimum thickness of cement decreases. Therefore, we recommend development of a new methodology for accurate insertion of a femoral stem along the broached space. Also, modification of the stem design robust to the unintentional movement of a femoral stem in the broached space, can alleviate the problem.

A technique for optimally designing fibre-reinforced laminated structures for minimum weight with manufacturing uncertainties accounted for

  • Walker, M.
    • Steel and Composite Structures
    • /
    • v.7 no.3
    • /
    • pp.253-262
    • /
    • 2007
  • A methodology to design symmetrically laminated fibre-reinforced structures under transverse loads for minimum weight, with manufacturing uncertainty in the ply angle, is described. The ply angle and the ply thickness are the design variables, and the Tsai-Wu failure criteria is the design constraint implemented. It is assumed that the probability of any tolerance value occurring within the tolerance band, compared with any other, is equal, and thus the approach is a worst-case scenario approach. The finite element method, based on Mindlin plate and shell theory, is implemented, and thus effects like bending-twisting coupling are accounted for. The Golden Section method is used as the search algorithm, but the methodology is flexible enough to allow any appropriate finite element formulation, search algorithm and failure criterion to be substituted. In order to demonstrate the procedure, laminated plates with varying aspect ratios and boundary conditions are optimally designed and compared.

Minimum cost design for circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression

  • Inocencio Luevanos-Soto;Arnulfo Luevanos-Rojas;Victor Manuel Moreno-Landeros;Griselda Santiago-Hurtado
    • Coupled systems mechanics
    • /
    • v.13 no.4
    • /
    • pp.311-335
    • /
    • 2024
  • This work aims to show a model to estimate the minimum cost (Thickness and area of steel in X and Y directions) for design a circular isolated footing with eccentric column that considers that the surface in contact with the ground works partially under compression. The formulation is shown by integration to find the moments, the bending shears and the punching shear using the pressure volume under the footing. Some researchers show the minimum cost design for circular isolated footings for an eccentric column assuming that the contact area works completely in compression, others consider the contact surface with the ground working partially in compression for a column in the center of the base. Three numerical examples are developed to obtain the complete design, which are: Example 1 for a column in the center of the base,Example 2 for a column at a distance of 1.50 m from the center of the base in the X direction, Example 3 for a column at a distance of 1.50 m from the center of the base in both directions. Also, a comparison of the new model against the model proposed by other authors is presented. The comparison shows that the new model generates a great saving of up to 43.74% for minimum area and 48.44% for minimum cost design in a column located in the center of the base, and when the column is located at a distance of radius/2 starting from the center of the base in the X direction generates great savings of up to 45.24% for minimum area and 31.80% for minimum cost design. Therefore, it is advisable to use the model presented in this study.

Thickness and Surface Measurement of Transparent Thin-Film Layers using White Light Scanning Interferometry Combined with Reflectometry

  • Jo, Taeyong;Kim, KwangRak;Kim, SeongRyong;Pahk, HeuiJae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.236-243
    • /
    • 2014
  • Surface profiling and film thickness measurement play an important role for inspection. White light interferometry is widely used for engineering surfaces profiling, but its applications are limited primarily to opaque surfaces with relatively simple optical reflection behavior. The conventional bucket algorithm had given inaccurate surface profiles because of the phase error that occurs when a thin-film exists on the top of the surface. Recently, reflectometry and white light scanning interferometry were combined to measure the film thickness and surface profile. These techniques, however, have found that many local minima exist, so it is necessary to make proper initial guesses to reach the global minimum quickly. In this paper we propose combing reflectometry and white light scanning interferometry to measure the thin-film thickness and surface profile. The key idea is to divide the measurement into two states; reflectometry mode and interferometry mode to obtain the thickness and profile separately. Interferogram modeling, which considers transparent thin-film, was proposed to determine parameters such as height and thickness. With the proposed method, the ambiguity in determining the thickness and the surface has been eliminated. Standard thickness specimens were measured using the proposed method. Multi-layered film measurement results were compared with AFM measurement results. The comparison showed that surface profile and thin-film thickness can be measured successfully through the proposed method.

Numerical simulation of the effect of bedding layer geometrical properties on the shear failure mechanism using PFC3D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.611-620
    • /
    • 2018
  • In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results shows that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilize in failure process. Also the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear test tensile strength was increased by increasing the layer thickness.

Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.507-517
    • /
    • 2018
  • In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly punch shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results show that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilizes in failure process. Also, the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear punch test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear punch test tensile strength was increased by increasing the layer thickness.

Effect of Air Gap Thickness on Top Heat Loss of a Closed-loop Oscillating Heat Pipe Solar Collector

  • Nguyen, Kim-Bao;Choi, Soon-Ho;Yoon, Doo-Ho;Choi, Jae-Hyuk;Oh, Cheol;Yoon, Seok-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.994-1002
    • /
    • 2009
  • In this paper, effect of air gap thickness between absorber plate and glass cover on top heat loss of a closed loop oscillating heat pipe (CLOHP) solar collector was investigated. The CLOHP, which is made of copper with outer diameter of 3.2mm and inner diameter of 2.0mm, comprises 8 turns with heating, adiabatic and cooling section. The heating section of the heat pipe was attached to absorber plate which heated by solar simulator simulated by halogen lamps. The cooling section of the heat pipe was inserted into collector's cooling section that made of transparent acrylic. Temperatures of absorber plate, glass cover, and ambient air measured by K-type thermocouple and were recorded by MV2000-Yokogawa recorder. Top heat loss coefficients and top heat loss of the collector corresponding to some cases of air gap thickness were determined. The result of experiment shows the optimal air gap thickness for minimum top heat loss of this solar collector.