Acknowledgement
The research described in this paper was financially supported by the Universidad Autonoma de Coahuila and Universidad Juarez del Estado de Durango, Mexico.
References
- ACI 318S-14 (American Concrete Institute) (2014), Building Code Requirements for Structural Concrete and Commentary, Committee 318.
- Agrawal, R. and Hora, M.S. (2012), "Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading", Struct. Eng. Mech., 44(1), 85-107. https://doi.org/10.12989/sem.2012.44.1.085.
- Aguilera-Mancilla, G., Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2019), "Modeling for the strap combined footings Part I: Optimal dimensioning", Steel Compos. Struct., 30(2), 97-108. https://doi.org/10.12989/scs.2019.30.2.097.
- Al-Ansari, M.S. (2013), "Structural cost of optimized reinforced concrete isolated footing", Int. Scholar. Sci. Res. Innov., 7(4), 193-200.
- Al-Ansari, M.S. (2014), "Cost of reinforced concrete paraboloid shell footing", J. Struct. Anal. Des., 1(3), 111-119.
- Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
- Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585.
- Anil, O ., Akbas, S.O., BabagĪray, S., Gel, A.C. and Durucan, C. (2017), "Experimental and finite element analyses of footings of varying shapes on sand", Geomech. Eng., 12(2), 223-238. https://doi.org/10.12989/gae.2017.12.2.223.
- Basudhar, P.K., Dey, A. and Mondal, A.S. (2012), "Optimal cost-analysis and design of circular footings", Int. J. Eng. Technol. Innov., 2(4), 243-264.
- Dagdeviren, U. (2016), "Shear stresses below the rectangular foundations subjected to biaxial bending", Geomech. Eng., 10(2), 189-205. https://doi.org/10.12989/gae.2016.10.2.189.
- Garay-Gallegos, J.R., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M., Aguilera-Mancilla, G. and Garcia-Canales, E. (2022), "A comparative study between the new model and the current model for T-shaped combined footings", Geomech. Eng., 30(6), 525-538. https://doi.org/10.12989/gae.2022.30.6.525.
- Garcia-Galvan, M., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Rivera-Mendoza, J.B. (2022), "A general model for rectangular footings. Part I: optimal Surface", DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellin, 89(221), 132-141. https://doi.org/10.15446/dyna.v89n221.100028.
- Garcia-Galvan, M., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Rivera-Mendoza, J.B. (2022), "A comparative study between trapezoidal combined footings and T-shaped combined footings", Couple. Syst. Mech., 11(3), 233-257. https://doi.org/10.12989/csm.2022.11.3.233.
- Garcia-Graciano, M.L., Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2022), "Mathematical modeling for corner strap combined footings resting on the ground: Part 1", Computacion y Sistemas, 26(4), 1429-1443. http://doi.org/10.13053/cys-26-4-4080.
- Golewski, G.L. (2019), "New principles for implementation and operation of foundations for machines: A review of recent advances", Struct. Eng. Mech., 71(3), 317-327. https://doi.org/10.12989/sem.2019.71.3.317.
- Gor, M. (2022), "Analyzing the bearing capacity of shallow foundations on two-layered soil using two novel cosmology-based optimization techniques", Smart Struct. Syst., 29(3), 513-522. https://doi.org/10.12989/sss.2022.29.3.513.
- Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2018), "Failure mechanisms in coupled soil-foundation systems", Couple. Syst. Mech., 7(1), 27-42. https://doi.org/10.12989/csm.2018.7.1.027.
- Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2018), "Failure mechanisms in coupled poro-plastic medium", Couple. Syst. Mech., 7(1), 43-59. https://doi.org/10.12989/csm.2018.7.1.043.
- Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2018), "Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure", Couple. Syst. Mech., 7(6), 649-668. https://doi.org/10.12989/csm.2018.7.6.649.
- Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2020), "3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium", Couple. Syst. Mech., 9(2), 125-145. https://doi.org/10.12989/csm.2020.9.2.125.
- Himeur, N., Mamen, B., Benguediab, S., Bouhadra, A., Menasria, A., Bouchouicha, B., Bourada, F., Benguediab, M. and Tounsi, A. (2022), "Coupled effect of variable Winkler-Pasternak foundations on bending behavior of FG plates exposed to several types of loading", Steel Compos. Struct., 44(3), 353-369. https://doi.org/10.12989/scs.2022.44.3.353.
- Ibrahimbegovic, A. and Mejia-Nava, R.A. (2021), "Heterogeneities and material-scales providing physically based damping to replace Rayleigh damping for any structure size", Couple. Syst. Mech., 10(3), 201-216. https://doi.org/10.12989/csm.2021.10.3.201.
- Jelusic, P. and Zlender, B. (2018), "Optimal design of pad footing based on MINLP optimization", Soil. Found., 58(2), 277-289. https://doi.org/10.1016/j.sandf.2018.02.002.
- Kaur, A. and Kumar, A. (2016), "Behavior of eccentrically inclined loaded footing resting on fiber reinforced soil", Geomech. Eng., 10(2), 155-174. https://doi.org/10.12989/gae.2016.10.2.155.
- Khajehzadeh, M., Taha, M.R. and Eslami, M. (2014), "Multi-objective optimization of foundation using global-local gravitational search algorithm", Struct. Eng. Mech., 50(3), 257-273. http://doi.org/10.12989/sem.2014.50.3.257.
- Kim-Sanchez, D.S., Luevanos-Rojas, A., Barquero-Cabrero, J.D., Lopez-Chavarria, S., Medina-Elizondo, M. and Luevanos-Soto, I. (2022), "A new model for the complete design of circular isolated footings considering that the contact surface works partially under compression", Int. J. Innov. Comput. I., 18(6), 1769-1784.
- Lee, J., Jeong, S. and Lee, J.K. (2015), "3D analytical method for mat foundations considering coupled soil springs", Geomech. Eng., 8(6), 845-850. https://doi.org/10.12989/gae.2015.8.6.845.
- Lezgy-Nazargah, M., Mamazizi, A. and Khosravi, H. (2022), "Analysis of shallow footings rested on tensionless foundations using a mixed finite element model", Struct. Eng. Mech., 81(3), 379-394. https://doi.org/10.12989/sem.2022.81.3.379.
- Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017a), "Optimal dimensioning for the corner combined footings", Adv. Comput. Des., 2(2), 169-183. https://doi.org/10.12989/acd.2017.2.2.169.
- Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017b), "A mathematical model for dimensioning of square isolated footings using optimization techniques: general case", Int. J. Innov. Comput. I., 13(1), 67-74.
- Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017c), "A new mathematical model for design of square isolated footings for general case", Int. J. Innov. Comput. I., 13(4), 1149-1168.
- Lopez-Chavarria, S., Luevanos-Rojas, A., Medina-Elizondo, M., Sandoval-Rivas, R. and Velazquez-Santillan, F. (2019), "Optimal design for the reinforced concrete circular isolated footings", Adv. Comput. Des., 4(3), 273-294. https://doi.org/10.12989/acd.2019.4.3.273.
- Luat, N.V., Lee, K. and Thai, D.K. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
- Luevanos-Rojas, A. (2014a), "A comparative study for dimensioning of footings with respect to the contact surface on soil", Int. J. Innov. Comput. I., 10(4), 1313-1326.
- Luevanos-Rojas, A. (2014b), "Design of isolated footings of circular form using a new model", Struct. Eng. Mech., 52(4), 767-786. https://doi.org/10.12989/sem.2014.52.4.767.
- Luevanos-Rojas, A. (2014c), "Design of boundary combined footings of rectangular shape using a new model", Dyna, 81(188), 199-208. https://doi.org/10.15446/dyna.v81n188.41800.
- Luevanos-Rojas, A. (2015a), "A new mathematical model for dimensioning of the boundary trapezoidal combined footings", Int. J. Innov. Comput. I., 11(4), 1269-1279.
- Luevanos-Rojas, A. (2015b), "Design of boundary combined footings of trapezoidal form using a new model", Struct. Eng. Mech., 56(5), 745-765. http://doi.org/10.12989/sem.2015.56.5.745.
- Luevanos-Rojas, A. (2016a), "A comparative study for the design of rectangular and circular isolated footings using new models", Dyna, 83(196), 149-158. https://doi.org/10.15446/dyna.v83n196.51056.
- Luevanos-Rojas, A. (2016b), "A mathematical model for the dimensioning of combined footings of rectangular shape", Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia, 39(1), 3-9.
- Luevanos-Rojas, A. (2016c), "A new model for the design of rectangular combined boundary footings with two restricted opposite sides", Revista ALCONPAT, 6(2), 172-187. https://doi.org/10.21041/ra.v6i2.137.
- Luevanos-Rojas, A. (2023a), "Minimum cost design for rectangular isolated footings taking into account that the column is located in any part of the footing", Build., 13(9), 1-16. https://doi.org/10.3390/buildings13092269.
- Luevanos-Rojas, A. (2023b), "Optimization for trapezoidal combined footings: Optimal design", Adv. Concrete Constr., 16(1), 21-34. https://doi.org/10.12989/acc.2023.16.1.021.
- Luevanos-Rojas, A. (2023c), "New model for complete design of rectangular isolated footings taking into account that the contact surface works partially in compression", Revista ALCONPAT, 13(2), 192-219. https://doi.org/10.21041/ra.v13i2.671.
- Luevanos-Rojas, A., Barquero-Cabrero, J.D., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017b), "A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models", Couple. Syst. Mech., 6(4), 417-437. https://doi.org/10.12989/csm.2017.6.4.417.
- Luevanos-Rojas, A., Barquero-Cabrero, J.D., Lopez-Chavarria, S., Medina-Elizondo, M., Vela-Moreno, V.B. and Barraza-Saucedo, R. (2022), "Costo minimo para zapatas combinadas trapezoidales de concreto reforzado apoyadas sobre el terreno", Revista Internacional de Investigacion e Innovacion Tecnologica, 10(56), 62-85.
- Luevanos-Rojas, A., Faudoa-Herrera, J.G. andrade-Vallejo, R.A. and Cano-Alvarez, M.A. (2013), "Design of isolated footings of rectangular form using a new model", Int. J. Innov. Comput. I., 9(10), 4001-4022.
- Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017a), "Optimal design for rectangular isolated footings using the real soil pressure", Ing. Invest., 37(2), 25-33. https://doi.org/10.15446/ing.investig.v37n2.61447.
- Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018a), "A new model for T-shaped combined footings Part I: Optimal dimensioning", Geomech. Eng., 14(1), 51-60. https://doi.org/10.12989/gae.2018.14.1.051.
- Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018b), "A new model for T-shaped combined footings Part II: Mathematical model for design", Geomech. Eng., 14(1), 61-69. https://doi.org/10.12989/gae.2018.14.1.061.
- Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M., Sandoval-Rivas, R. and Farias-Montemayor, O.M. (2020), "An analytical model for the design of corner combined footings", Revista ALCONPAT, 10(3), 317-335. https://doi.org/10.21041/ra.v10i3.432.
- Luevanos-Rojas, A., Moreno-Landeros, V.M., Santiago-Hurtado, G., Olguin-Coca, F.J., Lopez-Leon, L.D., Baltazar-Zamora, M.A. and Diaz-Gurrola, E.R. (2024b), "Mathematical modeling of the optimal cost for the design of circular isolated footings with eccentric column", Math., 12(5), 1-19. https://doi.org/10.3390/math12050733.
- Luevanos-Rojas, A., Santiago-Hurtado, G., Moreno-Landeros, V.M., Olguin-Coca, F.J., Lopez-Leon, L.D. and Diaz-Gurrola, E.R. (2024a), "Mathematical modeling of the optimal cost for the design of strap combined footings", Math., 12(2), 1-20. https://doi.org/10.3390/math12020294.
- Luevanos-Soto, I., Luevanos-Rojas, A., Moreno-Landeros, V.M. and Santiago-Hurtado, G. (2024), "Minimum area for circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression", Couple. Syst. Mech., 13(3), 201-217. https://doi.org/10.12989/csm.2024.13.3.201.
- Malapur, M.M., Cholappanavar, P. and Fernandes, R.J. (2018), "Optimization of RC column and footings using genetic algorithm", Int. Res. J. Eng. Technol. (IRJET), 5(8), 546-552.
- Mohebkhah, A. (2017), "Bearing capacity of stripfootingson a stone masonry trench in clay", Geomech. Eng., 13(2), 255-267. https://doi.org/10.12989/gae.2017.13.2.255.
- Montes-Paramo, P., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Sandoval-Rivas, R. (2023), "Optimal area for rectangular combined footings assuming that the contact surface with the soil works partially to compression", Ingenieria Investigacion y Tecnologia, 24(02), 1-15. https://doi.org/10.22201/fi.25940732e.2023.24.2.012.
- Moreno-Hernandez, M.A., Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2022), "Mathematical modeling for corner strap combined footings resting on the ground: Part 1", Computacion y Sistemas, 26(3), 1259-1272. http://doi.org/10.13053/cys-26-3-4079.
- Pasillas-Orona, A.I., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Aguilera-Mancilla, G. (2020), "Un modelo optimizado para zapatas combinadas trapezoidales apoyadas sobre el terreno: Superficie optima", Acta Universitaria, 30, 1-18. http://doi.org/10.15174/au.2020.2973.
- Rad, A.B. (2012), "Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads", Struct. Eng. Mech., 44(2), 139-161. https://doi.org/10.12989/sem.2012.44.2.139.
- Ramu, K. and Madhav, M.R. (2010), "Response of rigid footing on reinforced granular fill over soft soil", Geomech. Eng., 2(4), 281-302. https://doi.org/10.12989/gae.2010.2.4.281.
- Rawat, S. and Mittal, R.K. (2018), "Optimization of eccentrically loaded reinforced-concrete isolated footings", Pract. Period. Struct. Des. Constr., 23(2), 06018002. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000366.
- Rivera-Mendoza, J.B., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Garcia-Galvan, M. (2022), "General model for rectangular footings part II: modeling for design", Dyna, 89(223), 9-18. https://doi.org/10.15446/dyna.v89n223.100030.
- Rizwan, M., Alam, B., Rehman, F.U., Masud, N., Shahzada, K., Masud, T. (2012), "Cost optimization of combined footings using modified complex method of box", Int. J. Adv. Struct. Geotech. Eng., 1(1), 24-28.
- Soto-Garcia, S., Luevanos-Rojas, A., Barquero-Cabrero, J.D., Lopez-Chavarria, S., Medina-Elizondo, M., Farias-Montemayor, O.M. and Martinez-Aguilar, C. (2022), "A new model for the contact surface with soil of circular isolated footings considering that the contact surface works partially under compression", Int. J. Innov. Comput. I., 18(4), 1103-1116.
- Turedi, Y., Emirler, B., Ornek, M. and Yildiz, A. (2019), "Determination of the bearing capacity of model ring footings: Experimental and numerical investigations", Geomech. Eng., 18(1), 29-39. https://doi.org/10.12989/gae.2019.18.1.029.
- Vela-Moreno, V.B., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M., Sandoval-Rivas, R. and Martinez-Aguilar, C. (2022), "Optimal area for rectangular isolated footings considering that contact surface works partially to compression", Struct. Eng. Mech., 84(4), 561-573. https://doi.org/10.12989/sem.2022.84.4.561.
- Velazquez-Santillan, F., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Sandoval-Rivas, R. (2018), "Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings", Adv. Comput. Des., 3(1), 49-69. https://doi.org/10.12989/acd.2018.3.1.049.
- Yanez-Palafox, J.A., Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2019), "Modeling for the strap combined footings Part II: Mathematical model for design", Steel Compos. Struct., 30(2), 109-121. https://doi.org/10.12989/scs.2019.30.2.109.