• Title/Summary/Keyword: minimum sensitivity

Search Result 412, Processing Time 0.031 seconds

Sensitivity Analysis on the Degenerate Tree Solution of the Minimum Cost Flow Problem (최소비용문제의 퇴화 정점 최적해에 대한 감도분석)

  • Chung, Ho-Yeon;Park, Soon-Dal
    • IE interfaces
    • /
    • v.7 no.3
    • /
    • pp.193-199
    • /
    • 1994
  • The purpose of this paper is to develop a method of the sensitivity analysis that can be applicable to a degenerate tree solution of the minimum cost flow problem. First, we introduce two types of sensitivity analysis. A sensitivity analysis of Type 1 is the well known method applicable to a spanning tree solution. However, this method have some difficulties in case of being applied to a degenerate tree solution. So we propose a sensitivity analysis of Type 2 that keeps solutions of upper bounds remaining at upper bounds, those of lower bounds at lower bounds, and those of intermediate values at intermediate values. For the cost coefficient, we present a method that the sensitivity analysis of Type 2 is solved by using the method of a sensitivity analysis of Type 1. Besides we also show that the results of sensitivity analysis of Type 2 are union set of those of Type 1 sensitivity analysis. For the right-hand side constant or the capacity, we present a simple method for the sensitivity analysis of Type 2 which uses arcs with intermediate values.

  • PDF

A Study on the Taste Recognition of Culinary Arts Students (조리 전공 학생들의 미각 인식도에 관한 조사 연구)

  • Kim, Mi-Kyung;Chung, Hea-Jung
    • Culinary science and hospitality research
    • /
    • v.12 no.1 s.28
    • /
    • pp.111-125
    • /
    • 2006
  • This study aims to find out how taste recognition differs between two groups of culinary arts students. We conducted a questionnaire survey on minimum sensitivity and minimum tastiness for four basic tastes. The first group consisted of 40 students in their first year, and the second group consists of 56 students in their second year and third year. The survey shows that both groups preferred medium saltiness, and the second group was more favorable to sweetness than the first group. The sweet and the pungent tastes were more favored than sourness and less favored than bitterness by both groups of subjects. The amount of the sample required for minimum tastiness shows that the freshmen had a higher sensitivity than the sophomore and junior students. Contrary to a common belief that people who have more experience in cooking would have a more sensitive taste, this study shows that taste sensitivity does not always accord with cooking experience. Rather, it depends on individual differences and current health status. Further research should be needed for various sensory test method and more kitchen experienced people who has more working years after graduate college.

  • PDF

Synthesis of the State-space Digital Filter with Minimum Statistical Cofficient Sensitivity (최소총계적계수 감도를 갖는 상태공간 디지틀 필터의 합성)

  • 문용선;박종안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.6
    • /
    • pp.510-520
    • /
    • 1988
  • In this paper, the output error variance due to the differential vcariation of the state-space coefficient [ABCD], which is the coefficient quentization error, is normalized on the variance for cases that infinite wordlength state-space digital filter is realized by the finite one. That is, defining S as the statistical sensitivity and extending controllability gramian, observability gramian, and 2nd order mode analysis method to the state space digital filter, we synthesize the realization structure with the minimum statistical sensitivity and prove the effecency of the minimum statistical sensitivity structure synthesis by the simulation.

  • PDF

Sensitivity Analysis on the Non-tree Solution of the Minimum Cost Flow Problem (최소비용문제의 비정점 최적해에 대한 감도분석)

  • 정호연;박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The purpose of this paper is to develop a method of the sensitivity analysis that can be applied to a non-tree solution of the minimum cost flow problem. First, we introduce two types of sensitivity analysis. A sensitivity analysis of Type 1a is the well known method applicable to a tree solution. However this method can not be applied to a non-tree solution. So we propose a sensitivity analysis of Type 2 that keeps solutions of upper bounds at upper bounds, those of lower bounds at lower bounds, and those of intermediate values at intermediate values. For the cost coefficient we present a method that the sensitivity analysis of Type 2 is solved by finding the shortest path. Besides we also show that the results of Type 2 and Type 1 are the same in a spanning tree solution. For the right-hand side constant or the capacity, the sensitivity analysis of Type 2 is solved by a simple calculation using arcs with intermediate values.

  • PDF

Bit Error Rate Dependence on Amplifier Spacing in Long-Haul Optical Transmission System with Mid-Span Spectral Inversion (Mid-Span Spectral Inversion 기법을 채택한 장거리 광 전송 시스템에서의 증폭기 간격에 따른 비트 에러율)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2005
  • In this paper, bit error rate (BER) characteristics, sensitivity and minimum allowable launching power are numerically investigated as a function of amplifier spacing that consisted of 1,200 km WDM systems with MSSI method. It is conformed that the sensitivity and minimum allowable launching power are gradually degraded as amplifier spacings are gradually expanded, but those are not largely affected by modulation format. The sensitivity of RZ transmission system is smaller than that of NRZ transmission system, but minimum allowable launching power of NRZ transmission system is smaller than that of RZ transmission system. And, it is confirmed that the best amplifier spacing in NRZ and RZ transmission system is less than 50 km, because the sensitivity and minimum allowable launching power are less affected by fiber dispersion, channel wavelength and pump light power.

  • PDF

Joint Tolerance Design by Minimum Sensitivity Theorem (최소민감도이론에 의한 조인트 부재의 공차설계)

  • 임오강;류재봉;박배준;이병우
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.161-170
    • /
    • 1998
  • A general formulation of the long cylinder tolerance design for the joint structure is here presented. The aim of this paper is to calculate the tolerance of joint by defining tolerance as a kind of uncertainty and to obtain the robustness of the joint structure. It is formulated on the bases of the minimum sensitivity theorem. The objective function is the tolerance sensitivity for the Von-Mises stress. It also took into full account the stress, displacement and weight constraints. PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve the constrained nonlinear optimization problem. The finite element analysis is performed with CST(Constant-Strain-Triangle) axisymmetric element. Sensitivities for design variables are calculated by the direct differentiation method. The numerical result is presented for the cylindrical structure where the joint tolerance is treated as random variables.

  • PDF

Minimum Expected Cost based Design of Vertical Drain Systems (최소기대비용에 의한 연직배수시설의 설계)

  • Kim, Seong-Pil;Son, Young-Hwan;Chang, Pyung-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.93-101
    • /
    • 2007
  • In general, geotechnical properties have many uncertain aspects, thus probabilistic analysis have been used to consider these aspects. It is, however, quite difficult to select an appropriate target probability for a certain structure or construction process. In this study, minimum expected cost design method based on probabilistic analysis is suggested for design of vertical drains generally used to accelerate consolidation in soft clayey soils. A sensitivity analysis is performed to select the most important uncertain parameters for the design of vertical drains. Monte Carlo simulation is used in sensitivity analysis and probabilistic analysis. Total expected cost, defined as the sum of initial cost and expected additive cost, varies widely with variation of input parameters used in design of vertical drain systems. And probability of failure to get the minimum total expected cost varies under the different design conditions. A minimum value of total expected cost is suggested as a design value in this study. The proposed design concept is applicable to unit construction process because this approach is to consider the uncertainties using probabilistic analysis and uncertainties of geotechnical properties.

Sensitivity analysis of weights in multi-layer perceptron realizing continuous mappings

  • Choi, Chong-Ho;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1377-1382
    • /
    • 1990
  • In Multi-Layer Perceptron (MLP) which realizes continuous mappings, the output errors is directly affected by the weight errors which may be caused by the limited precision of digital or analog hardware in implementations. So, it is important to study the sensitivity due to the perturbation of connection weights between neurons. In this paper, we derive a sensitivity function to the statistical weight perturbations in MLP with differentiable activation functions. This sensitivity function can be regarded as an ensemble average of deterministic sensitivity measures due to the perturbations of weights. Hence, this sensitivity function can be used as the criteria for selecting weights with the minimum sensitivity among possible sets of connection weights in MLP. For the verification of the validity of the proposed sensitivity function, computer simulations have been performed and through the simulations we find good agreement between the theoretical and simulation results.

  • PDF

Robust Design Optimization of the Vehicle Ride Comfort Considering Variation of the Design Parameters (설계변수의 산포를 고려한 차량 승차감의 강건최적설계)

  • Song, Pil-Gon;Spiriyagin, Maksym;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1217-1223
    • /
    • 2008
  • Vehicle vibration mostly originates from the road excitation and causes discomfort, fatigue and even injury to a driver. Vehicle ride comfort is one of the most important performance indices to achieve a high-quality vehicle design. Since design parameter variations inevitably result in the vehicle ride comfort variance, the variance characteristics should be analyzed in the early design stage of the vehicle. The vehicle ride comfort is often defined by an index which employs a weighted RMS value of the acceleration PSD of a seat position. The design solution is obtained through two steps in this study. An optimization problem to obtain a minimum ride comfort index is solved first. Then another optimization problem to obtain minimum variance of the ride comfort index is solved. For the optimization problems, the equations of motion and the sensitivity equations are derived basing on a 5-DOF vehicle model. The numerical results show that an optimal solution for the minimum ride comfort is not necessarily same as that of the minimum variance of the ride comfort.

Impact Sensitivity and Friction Sensitivity of HTPB Based Propellant According to the Aluminum Content (HTPB 계열 추진제의 알루미늄 함량에 따른 충격감도 및 마찰감도 연구)

  • Kim, Kahee;Park, Jung-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.60-65
    • /
    • 2021
  • In this paper, we examined the ignition possibility of the propellant depending on its non-uniform composition of aluminum. Impact and friction sensitivity was investigated by arbitrarily changing the aluminum content in the range of 14~20% to simulate the non-uniform distribution of aluminum in the propellant. As a result of measuring the impact sensitivity, the 50% ignition energy and minimum ignition energy have values around 50 J regardless of the aluminum content. This means that the propellant does not become sensitive to impact even if the aluminum content is increased. On the other hand, the friction sensitivity result shows that as the aluminum content increases, the 50% ignition force and minimum ignition forces were decreased, and thus the propellant becomes sensitive. "Hot Spot" model of propellant ignition is applied, the space inside the propellant is momentarily compressed and ignited by friction stimuli rather than by impact stimuli.