• Title/Summary/Keyword: minimum rate constraint

Search Result 29, Processing Time 0.022 seconds

Power Allocation Schemes For Downlink Cognitive Radio Networks With Opportunistic Sub-channel Access

  • Xu, Ding;Feng, Zhiyong;Zhang, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1777-1791
    • /
    • 2012
  • This paper considers a downlink cognitive radio (CR) network where one secondary user (SU) and one primary user (PU) share the same base station (BS). The spectrum of interest is divided into a set of independent, orthogonal subchannels. The communication of the PU is of high priority and the quality of service (QoS) is guaranteed by the minimum rate constraint. On the other hand, the communication of the SU is of low priority and the SU opportunistically accesses the subchannels that were previously discarded by the PU during power allocation. The BS assigns fractions ?? and 1 ?? of the total available transmit power to the PU and the SU respectively. Two power allocation schemes with opportunistic subchannel access are proposed, in which the optimal values of ??'s are also obtained. The objective of one scheme is to maximize the rate of the SU, and the objective of the other scheme is to maximize the sum rate of the SU and the PU, both under the PU minimum rate constraint and the total transmit power constraint. Extensive simulation results are obtained to verify the effectiveness of the proposed schemes.

Minimum BER Power Allocation for OFDM-based Cognitive Radio Networks

  • Xu, Ding;Li, Qun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2338-2353
    • /
    • 2015
  • In this paper, the optimal power allocation algorithm that minimizes the aggregate bit error rate (BER) of the secondary user (SU) in a downlink orthogonal frequency division multiplexing (OFDM) based cognitive radio (CR) system, while subjecting to the interference power constraint and the transmit power constraint, is investigated under the assumption that the instantaneous channel state information (CSI) of the interference links between the secondary transmitter and the primary receiver, and between the primary transmitter and the secondary receiver is perfectly known. Besides, a suboptimal algorithm with less complexity is also proposed. In order to deal with more practical situations, we further assume that only the channel distribution information (CDI) of the interference links is available and propose heuristic power allocation algorithms based on bisection search method to minimize the aggregate BER under the interference outage constraint and the transmit power constraint. Simulation results are presented to verify the effectiveness of the proposed algorithms.

Performance and parameter region for real time use in IEEE 802.4 token bus network

  • Park, Hong-Seong;Kim, Deok-Woo;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1805-1810
    • /
    • 1991
  • This paper derives the upper and the lower bound of the mean cycle time and the mean service time of the class 6 and the class 4, within which the minimum utilization constrain of the class 4 is guaranteed. Also, derived are conditions under which the token bus network is stable or unstable. These bounds and stable conditions are represented in terms of the high priority token hold time, the token rotation time and the arrival rate and the total station number etc. This paper suggest a parameter tuning algorithm in a partially symmetric token bus network with two classes, which maximizes the token rotation time for a suitable high priority token hold time and at the same time meets the stability condition of the network, the real time constraint and the minimum utilization constraint of the class 4.

  • PDF

Minimum Weight Design for Bridge Girder using Approximation based Optimization Method

  • ;Yearn-Tzuo(Andrew);Gar
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.31-39
    • /
    • 1995
  • Weight minimization for the steel bridge girders using an approximation based optimization technique is presented. To accomplish this, an optimization oriented finite element program is used to achieve continuous weight reduction until the optimum is reached. To reduce computational cost, approximation techniques are adopted during the optimization process. Constraint deletion as well as intermediate design variables and responses are also used for higher qualitv of approximations and for a better convergence rate. Both the reliability and the effectiveness of the underlying optimization method are reviewed.

  • PDF

Time Series Data Cleaning Method Based on Optimized ELM Prediction Constraints

  • Guohui Ding;Yueyi Zhu;Chenyang Li;Jinwei Wang;Ru Wei;Zhaoyu Liu
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • Affected by external factors, errors in time series data collected by sensors are common. Using the traditional method of constraining the speed change rate to clean the errors can get good performance. However, they are only limited to the data of stable changing speed because of fixed constraint rules. Actually, data with uneven changing speed is common in practice. To solve this problem, an online cleaning algorithm for time series data based on dynamic speed change rate constraints is proposed in this paper. Since time series data usually changes periodically, we use the extreme learning machine to learn the law of speed changes from past data and predict the speed ranges that change over time to detect the data. In order to realize online data repair, a dual-window mechanism is proposed to transform the global optimal into the local optimal, and the traditional minimum change principle and median theorem are applied in the selection of the repair strategy. Aiming at the problem that the repair method based on the minimum change principle cannot correct consecutive abnormal points, through quantitative analysis, it is believed that the repair strategy should be the boundary of the repair candidate set. The experimental results obtained on the dataset show that the method proposed in this paper can get a better repair effect.

MMSE Transmit Optimization for Multiuser Multiple-Input Single-Output Broadcasting Channels in Cognitive Radio Networks

  • Cao, Huijin;Lu, Yanhui;Cai, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2120-2133
    • /
    • 2013
  • In this paper, we address the problem of linear minimum mean-squared error (MMSE) transmitter design for the cognitive radio (CR) multi-user multiple-input single-output (MU-MISO) broadcasting channel (BC), where the cognitive users are subject to not only a sum power constraint, but also a interference power constraint. Evidently, this multi-constraint problem renders it difficult to solve. To overcome this difficulty, we firstly transform it into its equivalent formulation with a single constraint. Then by utilizing BC-MAC duality, the problem of BC transmitter design can be solved by focusing on a dual MAC problem, which is easier to deal with due to its convexity property. Finally we propose an efficient two-level iterative algorithm to search the optimal solution. Our simulation results are provided to corroborate the effectiveness of the proposed algorithm and show that this proposed CR MMSE-based scheme achieves a suboptimal sum-rate performance compared to the optimal DPC-based algorithm with less computational complexity.

Design Of Air-Distribution System in a Duct (취출구를 가진 덕트의 공기분배장치 설계)

  • Kang, Hyung-Seon;Cho, Byung-Ki;Koh, Young-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.954-960
    • /
    • 2007
  • The purpose of this paper is to obtain design method of air-distribution system. Air-distribution system is composed of blower, duct, diffusers and measuring equipment. The air-flow rate from each diffuser is not equal. The air-flow rate is calculated with the combined equations which are Bernoulli's equation, continuity equation and minor loss equations. Inlet condition and outlet condition are adapted in each duct system. Then square difference between function of maximum air-flow rate and minimum air-flow rate is used as an object function. Area of diffuser and velocity are established as constraints. To minimize the object function, the optimization method is used. After optimization the design variables are selected under satisfaction of constraints. The air-distribution system is calculated again with the result of optimized design variable. It is shown that the air-distribution system has the equal air-flow rate from diffusers.

M_CSPF: A Scalable CSPF Routing Scheme with Multiple QoS Constraints for MPLS Traffic Engineering

  • Hong, Daniel W.;Hong, Choong-Seon;Lee, Gil-Haeng
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.733-746
    • /
    • 2005
  • In the context of multi-protocol label switching (MPLS) traffic engineering, this paper proposes a scalable constraintbased shortest path first (CSPF) routing algorithm with multiple QoS metrics. This algorithm, called the multiple constraint-based shortest path first (M_CSPF) algorithm, provides an optimal route for setting up a label switched path (LSP) that meets bandwidth and end-to-end delay constraints. In order to maximize the LSP accommodation probability, we propose a link weight computation algorithm to assign the link weight while taking into account the future traffic load and link interference and adopting the concept of a critical link from the minimum interference routing algorithm. In addition, we propose a bounded order assignment algorithm (BOAA) that assigns the appropriate order to the node and link, taking into account the delay constraint and hop count. In particular, BOAA is designed to achieve fast LSP route computation by pruning any portion of the network topology that exceeds the end-to-end delay constraint in the process of traversing the network topology. To clarify the M_CSPF and the existing CSPF routing algorithms, this paper evaluates them from the perspectives of network resource utilization efficiency, end-to-end quality, LSP rejection probability, and LSP route computation performance under various network topologies and conditions.

  • PDF

The In-Core Fuel Management by Variational Method (변분법에 의한 노심 핵연료 관리)

  • Kyung-Eung Kim
    • Nuclear Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.181-194
    • /
    • 1984
  • The in-core fuel management problem was studied by use of the calculus of variations. Two functions of interest to a public power utility, the profit function and the cost function, were subjected to the constraints of criticality, the reactor turnup equations and an inequality constraint on the maximum allowable power density. The variational solution of the initial profit rate demonstrated that there are two distinct regions of the reactor, a constant power region and a minimum inventory or flat thermal flux region. The transition point between these regions is dependent on the relative importance of the profit for generating power and the interest charges for the fuel. The fuel cycle cost function was then used to optimize a three equal volume region reactor with a constant fuel enrichment. The inequality constraint on the maximum allowable power density requires that the inequality become an equality constraint at some points in the reactor. and at all times throughout the core cycle. The finite difference equations for reactor criticality and fuel burnup in conjunction with the equality constraint on power density were solved, and the method of gradients was used to locate an optimum enrichment. The results of this calculation showed that standard non-linear optimization techniques can be used to optimize a reactor when the inequality constraints are properly applied.

  • PDF

A Study on the Optimum Design of Air-Conditioning Duct with Multiple Diffusers (다수의 취출구를 갖는 A/C덕트의 최적설계에 관한 연구)

  • 김민호;이대훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.98-106
    • /
    • 2002
  • The airflow characteristics of an air-conditioning duct with multiple diffusers were investigated through one-dimensional analysis, CFD simulation and experimental measurement. One-dimensional program based on Bernoulli's equation and minor loss equations was developed in order to evaluate the air distribution rate at each diffuser. In CFD simulation, three-dimensional flow characteristics inside air-conditioning duct were computed for incompressible viscous flow, adopting the RNG k-$\xi$turbulence model. Also, in an effort to equalize the discharge flow rate at each outlet, the optimization procedure has been performed to obtain the optimum diffuser area. In this process, square of difference between maximum discharge rate and minimum discharge rate is used as an object function. Diffuser area and discharge velocity are established as constraints. After optimization process, determined design variables are applied again in CFD simulation and experiment to validate the optimized result by one-dimensional program. Comparison with the experimental data of airflow rate distribution showed that the developed program seems to be acceptable and can be useful design tool for an automotive air-conditioning duct in an initial design stage.