• Title/Summary/Keyword: minimum phase

Search Result 930, Processing Time 0.027 seconds

A Kinematical Analysis of Side Kick Motion in Taekwondo (태권도 옆차기 동작의 운동학적 분석)

  • Park, Kwang-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.49-63
    • /
    • 2003
  • For this study, four male university Taekwondo players were randomly chosen, between the weight categories of 60Kg and 80Kg. Their side kicks (yeop chagi), which are part of foot techniques, were kinematically analyzed in terms of the time, angle, and angular velocity factors involved with the kicks through the three-dimensional imaging. The results of the analysis are as fellows. 1. Time factor The first phase(preparation) was 0.48sec on average, accounting for 60% of the entire time spent; the second phase(the minimum angle of the knee joint) was 0.21sec on average, taking up 26% of the whole time spent; and the third phase(hitting) was 0.11sec on average, representing 14% of the entire time spent. 2. Angle factor In the first phase(preparation), rotating their bodies along the long axis, the players bended their hip and knee joints a lot, by moving fast in the vertical and horizontal directions, in the second phase(the minimum angle of the knee joint), the players continued to extend their bodies along the vertical axis, while pronating their lower legs and bending their hip and knee joints a lot to reduce the radius of gyration, and in the third phase(hitting), they extended their knee joints greatly so that the angle movements of their lower bodies shifted to circle movements. 3. Angular velocity factor In the first phase(preparation), the angular velocity of the hip and knee joints increased. while moving horizontally and rotating the body along the long axis; in the second phase(the minimum angle of the knee joint), the angular velocity increased by bending the hip and knee joints fast to reduce the rotation radios; and in the third phase(hitting), the angular velocity was found to have increased, by rotating the body along the long axis to increase the angular velocity and shifting the angular momentum of the pronated knee joint to the circular momentum.

Minimum-Entropy-Based Autofocus Method for Real SAR Images (실제 SAR 영상에서의 최소 엔트로피 기반의 자동 초점 기법 연구)

  • Hwang, Jeonghun;Shin, Hyun-Ik;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.366-374
    • /
    • 2018
  • In cases of airborne equipped with SAR, because the occurrence of motion is inevitable, it is necessary to apply autofocus techniques to SAR images to improve the image performance degradations caused by residual errors. Herein, a robust autofocus algorithm based on the minimum entropy criteria is proposed for the real SAR data in the spotlight mode. The convergence condition of the phase error estimation is checked at every iteration and if it is violated, the size of the phase error estimation is adjusted to the convergence condition. The real SAR raw data is used to demonstrate the excellent performance of the proposed algorithm.

Limited Feedback Designs for Two-Way Relaying Systems with Physical Network Coding

  • Kim, Young-Tae;Lee, Kwangwon;Jeon, Youngil;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.463-472
    • /
    • 2015
  • This paper considers a limited feedback system for two-way wireless relaying channels with physical network coding (PNC). For full feedback systems, the optimal structure with the PNC has already been studied where a modulo operation is employed. In this case, phase and power of two end node channels are adjusted to maximize the minimum distance. Based on this result, we design new quantization methods for the phase and the power in the limited feedback system. By investigating the minimum distance of the received constellation, we present a code-book design to maximize the worst minimum distance. Especially, for quantization of the power for 16-QAM, a new power quantization scheme is proposed to maximize the performance. Also, utilizing the characteristics of the minimum distance observed in our codebook design, we present a power allocation method which does not require any feedback information. Simulation results confirm that our proposed scheme outperforms conventional systems with reduced complexity.

Adaptive DC-link Voltage Control for Shunt Active Power Filter

  • Wang, Yu;Xie, Yun-Xiang
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.764-777
    • /
    • 2014
  • This study analyzes the mathematical relationship between DC-link voltage and system parameters for shunt active power filters (APFs). Analysis and mathematical deduction are used to determine the required minimum DC-link voltage for APF. A novel adaptive DC-link voltage controller for the three-phase four-wire shunt APF is then proposed. In this controller, the DC-link voltage reference value will be maintained at the required minimum voltage level. Therefore, power consumption and switching loss will effectively decrease. The DC-link voltage can also adaptively yield different DC-link voltage levels based on different harmonic currents and grid voltage levels and thus avoid the effects of harmonic current and grid voltage fluctuation on compensation performance. Finally, representative simulation and experimental results in a three-phase four-wire center-split shunt APF are presented to verify the validity and effectiveness of the minimum DC-link voltage design and the proposed adaptive DC-link voltage controller.

A Theoretical Study for the Thermal Diffusivity Measurement of Solid Material using Photothermal Displacement Method (광열변위법을 이용한 재료의 열확산계수 측정에 대한 이론적 연구)

  • Jeon, Pil-Soo;Lee, Eun-Ho;Lee, Kwang-Jai;Yoo, Jai-Suk;Kim, Ki-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.132-137
    • /
    • 2000
  • A complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in solid materials. The influence of parameters - radius and modulation frequency of pump beam and thickness of material - on the phase lag was studied. The phase decreases up to a certain position, then starts to increase and does have an asymptotic value. The position, where phase has the minimum value, is a function of thermal diffusion length thickness of sample, and radius of pump beam. A new method based on minimum phase lag is described to determine the thermal diffusivity of solid material.

  • PDF

Thermal diffusivity measurements of opaque solid using the phase lag of photothermal displacement. (광열변위의 위상차를 이용한 불투명 고체의 열확산계수 측정)

  • Lee, Eun-Ho;Lee, Kwang-Jai;Jeon, Pil-Soo;Yoo, Jai-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.138-143
    • /
    • 2000
  • A new method of measuring the thermal diffusivity of solid material at room temperature with photothermal displacement method is proposed. The influence of the parameters on phase lag was studied. From the minimum position of phase of measured deflection with respect to the pump beam the thermal diffusivity of the materials can be obtained. The minimum position of phase is determined using multiparameter least-square regression fitting. The experimental values for different samples obtained by applying new method are in good agreement with the literature values.

  • PDF

A Study on the Phase Correction of ultratrasound transfer function (초음파 전달함수의 위상보정을 위한 연구)

  • Min, Yong-Ki;Lee, Kang-Ho;Choi, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.713-716
    • /
    • 1988
  • To characterize the bioloical tissues, the new methods to measure the frequency dependent attenuation are presented in this paper. In general, ultrasonic phase information was assumed by linear function of the frequency. But the minimum phase function which characterizes the frequency dispersion of tissue was derived in (2). It is very significant to measure the attenuation by using the minimum phase function to characterize the frequence dispersion of tissue. Also, we propose the phase correcting technique to take advantage of the idea that the distortion of amplitude component when the wave propagates through media.

  • PDF

Speech Enhancement Using Phase-Dependent A Priori SNR Estimator in Log-Mel Spectral Domain

  • Lee, Yun-Kyung;Park, Jeon Gue;Lee, Yun Keun;Kwon, Oh-Wook
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.721-729
    • /
    • 2014
  • We propose a novel phase-based method for single-channel speech enhancement to extract and enhance the desired signals in noisy environments by utilizing the phase information. In the method, a phase-dependent a priori signal-to-noise ratio (SNR) is estimated in the log-mel spectral domain to utilize both the magnitude and phase information of input speech signals. The phase-dependent estimator is incorporated into the conventional magnitude-based decision-directed approach that recursively computes the a priori SNR from noisy speech. Additionally, we reduce the performance degradation owing to the one-frame delay of the estimated phase-dependent a priori SNR by using a minimum mean square error (MMSE)-based and maximum a posteriori (MAP)-based estimator. In our speech enhancement experiments, the proposed phase-dependent a priori SNR estimator is shown to improve the output SNR by 2.6 dB for both the MMSE-based and MAP-based estimator cases as compared to a conventional magnitude-based estimator.

Measurement of Thermal Diffusivity Using Minimum Phase Based on the Photothermal Displacement (광열변위의 최소위상을 이용한 열확산계열수 측정)

  • Lee, Eun-Ho;Lee, Gwang-Jae;Jeon, Pil-Su;Yu, Jae-Seok;Kim, Gi-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.296-304
    • /
    • 2001
  • A new method of measuring the thermal diffusivity of solid material at room temperature using photothermal displacement is proposed. The influence of the parameters, such as radius and modulation frequency of the pump beam and the sample thickness, was studied. From the minimum position of phase of measured deflection with respect to the pump beam, the thermal diffusivity of the materials can be obtained. The position where phase has the minimum value is determined using multiparameter least-square regression fitting. The experimental values for different samples obtained by applying the new method are in good agreement with the literature values.

Design of robust controller for the longitudinal autopilot system of BTT missile using QFT (QFT를 이용한 BTT 미사일 종방향 오토파일럿 시스템의 강인제어기 설계)

  • 김석우;윤경한;김영철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.418-421
    • /
    • 1997
  • A design method of robust controller for the longitudinal autopilot of BTT missile is considered. The difficulties are a set of linearized dynamic models which corresponds to different operating points has a wide range of parameters and it has even Non-Minimum Phase(NMP) zeros. In this paper, such a family of models is expressed by an interval plant. Then a robust control design method using QFT is represented. A simulation result shows that the proposed controller satisfies the given specification well.

  • PDF