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We propose a novel phase-based method for single-
channel speech enhancement to extract and enhance the 
desired signals in noisy environments by utilizing the 
phase information. In the method, a phase-dependent a 
priori signal-to-noise ratio (SNR) is estimated in the log-
mel spectral domain to utilize both the magnitude and 
phase information of input speech signals. The phase-
dependent estimator is incorporated into the conventional 
magnitude-based decision-directed approach that 
recursively computes the a priori SNR from noisy speech. 
Additionally, we reduce the performance degradation 
owing to the one-frame delay of the estimated phase-
dependent a priori SNR by using a minimum mean 
square error (MMSE)-based and maximum a posteriori 
(MAP)-based estimator. In our speech enhancement 
experiments, the proposed phase-dependent a priori SNR 
estimator is shown to improve the output SNR by 2.6 dB 
for both the MMSE-based and MAP-based estimator 
cases as compared to a conventional magnitude-based 
estimator. 
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I. Introduction 

Along with the recent development in digital signal 
processing and multimedia communication technologies, a 
variety of speech communication services based on speech 
recognition systems have become popular. In general, although 
the speech recognition systems show high accuracy in quiet 
environments, they suffer rapid performance degradation in 
noisy environments. However, in a realistic speech recognition 
scenario, speech signals are frequently contaminated by 
background noisy sources. These noise sources have prevented 
the widespread use of automatic speech recognition systems in 
real environments. Automatic speech processing techniques 
still yield an inferior performance to the human ear in 
separating target speech signals from other mixed audio signals. 
A reduction of acoustical background noise or an enhancement 
of the speech signals is important to enhance the speech quality, 
reduce the degree of fatigue for speech communication 
terminals, and improve the speech recognition accuracy of 
smartphones [1]–[4]. 

Single-channel speech enhancement technologies enhance 
the speech signals or reduce noise from the noisy signals 
captured by a single microphone. In a unified view toward 
single-microphone speech enhancement systems, the 
enhancement process depends on the estimation of the spectral 
gain, which is a function of the a priori signal-to-noise ratio 
(SNR) or a posteriori SNR, to enhance the desired signal [1]. A 
decision-directed (DD) approach is widely used to determine a 
priori SNR from noisy speech signals because it effectively 
reduces musical noise, which is the residual noise of estimated 
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frames and is annoying to listeners [3]–[5]. However, this 
method has a serious drawback in that the estimated a priori 
SNR follows the shape of the a posteriori SNR with the delay 
of a single short time frame [5]. This delay is due to the use of 
the speech spectrum estimated in the previous frame to 
compute the current a priori SNR. In addition, in a 
conventional DD approach, only spectral magnitude 
components are used to compute the a priori SNR, and the 
phase components were disregarded based on the assumption 
that the phase difference has zero mean. However, the phase 
components are known to have some speech information and 
to be useful in human speech perception and automatic speech 
recognition [6]–[10]. 

In this paper, we estimate the phase-dependent a priori SNR 
in the log-mel spectral domain by applying a nonlinear 
transform. In the proposed a priori SNR estimator, we do not 
assume that the phase components have zero mean. After 
translating the power spectral vector from a noisy speech signal 
to the log-mel spectral vector, we estimate the phase-dependent 
a priori SNR by utilizing both the magnitude and phase 
information. The conventional DD approach is also combined 
with the estimator to recursively obtain the a priori SNR. 
Detailed descriptions of the phase-dependent a priori SNR 
estimator can be found in [11], which was previously published 
as an article conference proceeding. In addition, we refine the 
estimated phase-dependent a priori SNR using the MMSE-
based and MAP-based a priori SNR estimator to solve the 
delay problem while maintaining the advantages of the DD 
approach. Experimental results show that the proposed 
estimator improves the output SNR. 

The remainder of this paper is organized as follows. Section 
II describes the signal modeling. Section III describes a 
conventional DD approach, the proposed phase-dependent a 
priori SNR estimator in the log-mel domain, the phase-based 
DD approach, and the minimum mean square error (MMSE)-
based and the maximum a posteriori (MAP)-based two-step a 
priori SNR estimator. Section IV describes the experimental 
results, and finally, Section V offers some concluding remarks. 

II. Signal Modeling 

Let x(t) and n(t) represent the original speech signal and a 
noise from a single microphone, respectively. The mixed 
speech signal y(t) is simply the sum of these two signals.  

( ) ( ) ( ).y t x t n t                 (1) 

We assume that x(t) and n(t) are uncorrelated with each other. 
Let X and N represent the spectral magnitude of speech signal 
and noise, respectively. Denoting the spectral magnitude of the 
noisy speech signal by Y, the relationship between the noisy  

speech, clean speech, and noise in the power spectral domain 
can be shown as follows [7]: 

2 2 2 2cos( ) ,Y X N XN             (2) 

where θ is the phase vector with a phase difference between X 
and N.  

Typically, the phase term 2cos(θ)XN is disregarded based on 
the assumption that it is zero on average.  

  2 2 2Y X N  .               (3) 

However, when (1) is nonlinearly transformed into the log-
mel domain by taking the logarithm, the phase term might not 
be zero on average [7] because the mean of a nonlinearly 
transformed pdf is not necessarily equal to the transformed 
mean of the original pdf.  

The mel-scale filter is a filter bank whose center frequency is 
located in the mel-frequency scale, and its bandwidth increases 
as the center frequency increases. It resembles the human 
auditory system in that it is more sensitive in the low-frequency 
bands. Let mel represent the index at the mel-scale at f Hz, 
which is given as 

 1127 ln / 700 1 .mel f             (4) 

Figure 1 shows the 23 normalized mel-scale filters used in 
this work. For each mel-scale filter, a single coefficient is 
obtained by weighting the power spectrum coefficients within 
the mel-scale filter with a filter bank matrix. 

Let Yp, Xp, and Np denote the products of Y2, X2, and N2 with 
the mel–filter bank matrix W, respectively [12]–[13]. Their 
relationship in the mel spectral domain becomes 

 2 cos ,
p pp p p p p X NY X N X N           (5) 

where 
pX  and 

pN  are the phase spectrum of Xp and Np, 

respectively. Since (5) is a quadratic function of pX , we can 

obtain the following two solutions: 

 2
2( 1) ,

p p p pp X N p X N p pX c N c N Y         (6) 

 

 

Fig. 1. Normalized mel-scale filters used in this work. 
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where 
p pX Nc  is defined as follows: 

cos( ).
p p p pX N X Nc                (7) 

III. Phase-Based Speech Enhancement Algorithm 

1. DD Approach 

The DD approach is a widely used method to determine a 
priori SNR from a noisy signal [4], where the a priori SNR is 
recursively estimated based on the definition of a priori SNR 
and its relationship with the a posteriori SNR. The a posteriori 
SNR, which is the parameter for noise suppression, is defined 
as the ratio of power spectra of a noisy signal and noise. The a 
posteriori SNR at the mth frame and kth frequency bin, 

( , ),m k  is given by 

 2 2
( , ) ( , ) ( , ) .m k Y m k E N m k          (8) 

The noise power spectrum is estimated during speech pauses 
by using the weighted noise estimation method [14]. The a 
priori SNR can be defined as 

   2 2
( , ) ( , ) ( , ) .m k E X m k E N m k        (9) 

The instantaneous SNR can be defined as 

 

 
   

 

2 2

2 2 2

2 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) 1.

m k X m k E N m k

Y m k N m k E N m k

Y m k E N m k

 

 

  
 

   (10) 

From the linear combination of the two expressions in (9) and 
(10), we obtain the new a priori SNR as 

 
2

2

( , )
( , ) [(1 ) ( , )] ,

( , )

X m k
m k E m k

E N m k
   

 
     
  

 (11) 

with a weighting factor that is constrained to be 10   . 
However, as the above expression is hard to implement in 

practice, approximations were made to determine the new a 
priori SNR recursively. 

   
2

2

ˆ ( 1, )
ˆ( , ) (1 ) max ( , ) 1,0

( 1, )

X m k
m k m k

E N m k
   


   


, 

 (12) 

where 

2ˆ ( 1, )X m k  and  2
( 1, )E N m k  are the speech 

and noise power spectra estimated in the previous analysis 
frame, respectively. 

2. Estimation of A Priori SNR in the Log-Mel Domain 

Most speech enhancement methods generally use only the 
spectral magnitude by totally disregarding the phase [8]. The 
spectral phase component holds speech information and is used 
for human speech perception. There have been a few research 
activities on utilizing the phase information for speech 
recognition systems. In this paper, we propose a phase-
dependent a priori SNR estimator to remove the background 
noise effectively and improve the performance of speech 
enhancement algorithms. We transform the power spectral 
vectors of noisy speech signals into the log-mel spectral vectors 
to make the non-zero phase term. Then, by estimating the a 
priori SNR in the log-mel domain and enhancing the desired 
speech signal, we utilize both the magnitude and phase 
component in the speech enhancement.  

The subtractive rule given in (6) is simple to use. However, it 

is ambiguous regarding the   sign of (6) in that we have no 

simple way of knowing which sign to use. To avoid the sign 

ambiguity in (6), we algebraically derive an alternative 

subtractive rule by applying the cosine law to the vector 

diagram [4] shown in Fig. 2. 

2 ,

cos( ).
p p

p p p p

p p p p p Y N

Y N Y N

X Y N Y N c

c  

  

 
       (13) 

We derive the phase term 
p pY Nc  at the mth frame and kth 

frequency bin by making the recursive equation relative to 

p pX Nc  using the cosine law and spectrum ˆ ( 1, )pX m k  

estimated in the previous frame. 

 ˆ ,

( 1, ) ( , )
ˆ ( , ) ( 1, ) .

( 1, ) ( , )

p p p p

p p p p

p p Y N p X N

p p

Y N X N

p p

X Y c N c

X m k N m k
c m k c m k

Y m k Y m k

 

 
   
  

   (14) 

Let log( ) ( , )
pN m k  be the noise power spectrum in the log-

mel domain estimated during the speech pauses. The phase-

dependent a priori SNR is defined as 

 

 

Fig. 2. Diagram illustrating the trigonometric relationship of the 
clean, noise, and noisy signals. 
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 
 

log( )

log( )

( , ) log ( , ) ( , ) ,

( , ) log ( , ) .

p

p

p p N

N p

m k E X m k m k

m k E N m k

 



   
   

    (15) 

The phase-dependent a posteriori SNR is given by 

  log( )( , ) log ( , ) ( , ).
pp p Nm k E Y m k m k          (16) 

In addition, the phase-dependent instantaneous SNR can be 
defined as 

 
log( )

ˆlog ( , ) ( , ) 2 ( , ) ( , )
( , ) .

( , )

p p

p

p p Y N p p

p
N

E Y m k N m k c Y m k N m k
m k

m k




   

  (17) 

3. DD Approach in the Log-Mel Domain 

To determine the a priori SNR from a noisy signal, we use 
the DD approach, where the a priori SNR is computed as a 
linear combination of (15) and (17) [4]. 

 
log( )

log( )

log ( , )1 1
( , ) ( , ) ,

2 ( , ) 2

ˆlog ( , ) ( , ) 2 ( , ) ( , )
( , ) .

( , )

p

p p

p

p

p
N

p p Y N p p

N

X m k
m k E m k

m k

Y m k N m k c Y m k N m k
m k

m k

 





 
  
  
   

 (18) 
The final estimator is derived by making the preceding 
equation recursive. 

log( )

ˆlog ( 1, )
ˆ ( , ) (1 ) max ( , ),0 ,

( 1, )
p

p

p
N

X m k
m k m k

m k
   



        

 (19) 
where 0 1   is the weighting factor and ˆ ( 1, )pX m k  
is the magnitude estimator obtained in the previous analysis 
frame. In this paper we chose 0.98  . 

4. Two-Step A Priori SNR Estimation 

In the conventional a priori SNR determination system with 
the DD approach, the estimated a priori SNR consequently 
follows the a posteriori SNR with a one-frame delay. This 
delay is due to the use of the speech spectrum estimated in the 
previous frame to compute the current a priori SNR; therefore, 
it degrades the speech enhancement performance.  

We propose a two-step phase-dependent a priori SNR 
estimator based on the MMSE and the MAP in the log-mel 
spectral domain to overcome the performance degradation 
caused by the one-frame delay. 

A. MMSE-Based A Priori SNR Estimator 

The MMSE estimator for the power spectral density X2  

can be given by the conditional expectation  

2 2

2

ˆ ( | )

( | ) ( )

( | ) ( )

X E X Y

X P Y X P X dX

P Y X P X dX










 


          (20) 

and redefined from (20) as [6] 
22 2 2

22
2 2 2 2

( ) ( ) ( )ˆ .
( ) ( ) ( ) ( )

E X E X E N
X Y

E X E N E X E N

 
  

   
  

 (21) 

Using (8) and (9) in (21), the MMSE-based a priori SNR 
estimation is given by 

    
2 2

MMSE
ˆ (| | )

(1 ) 1 (1 ) .

X E N

    



   
       (22) 

The first step of the phase-dependent a priori SNR 
estimation is the DD approach in the log-mel domain, whereas 
the second step, (22), is used to refine the estimated a priori 
SNR of the DD approach. Thus, the refined phase-dependent a 
priori SNR using the MMSE estimation is given by 

  
 

MMSE

2 2

ˆ ˆ ˆ ˆ(1 ) 1 (1 ) ,

| | | | .

p p p p p

p p pY E N

     



     




    (23) 

B. MAP-Based A Priori SNR Estimator 

The MAP-based estimator for the speech amplitude X can be 
given by the conditional expectation with the noisy speech 
amplitudeY as follows: 

ˆ arg max ( | )

( | ) ( )
arg max .

( )

x

x

X p X Y

p Y X p X

p Y




          (24) 

The Rician pdf ( | )p Y X  is given by 

   
2 2

2

02 2

2 2
| e I ,

( ) ( )

X Y

E NY YX
p Y X

E N E N

 
  

  
 

  
  

    (25) 

where I0 denotes the modified Bessel function with order zero. 
The pdf of the noisy spectrum Y conditioned on the speech 
amplitude and phase can be written as 

2

2

e

( )

2

1
( | , ) e .

π ( )

jY X

E N

p Y X
E N





   
 
          (26) 

The MAP-based a priori SNR estimation is obtained by 
maximizing ( | ) ( )p Y X p X  and is given by 
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Fig. 3. Variations of the a priori SNR before and after refinement 
of the phase-dependent a priori SNR. 
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The refined phase-dependent a priori SNR using the MAP 

estimation is given by 

MAP
ˆ ˆ(1 ) (1/ 4) ,p p pH          

       (28) 

where H is the noise suppression gain (de-noising filter). 

5. Speech Reconstruction 

The multiplicative gain function (de-noising filter) in the DD 
approach is a function of the a priori SNR given in [4]. 

ˆ ˆ( , ) ( , ) 1 ( , ) .H m k m k m k             (29) 

The enhanced speech spectrum is then obtained as follows: 

ˆ ( , ) ( , ) ( , ).X m k H m k Y m k             (30) 

After translating the enhanced log-mel spectrum into the 
power spectral domain again, we finally obtain the entire 
enhanced speech signal by taking the inverse discrete Fourier 
transform (DFT) and applying the overlap-add method [15]. 
Figure 3 shows an example of the variations of the a priori 
SNR before and after refinement of the phase-dependent a 
priori SNR estimated using the MMSE-based approach. We 
can confirm that the proposed two-step phase-dependent a 
priori SNR estimation approach solves the delay problem. 

IV. Experimental Results and Discussion 

1. Speech Database 

A speech database was selected from the Interspeech 2006 
Speech Separation Challenge [16], which was drawn from the 
GRID speech database consisting of six-word sentences with a 
vocabulary size of 52. The database was recorded by 34 
different speakers and was sampled at 25 kHz. For speech 
enhancement experiments, three types of noise were used: car 
(N1), babble (N2), and white Gaussian (N3). The speech signal 

and noise sources were mixed by adding and scaling digitally 
to create three sets of noisy speech signal recordings. The 
mixed speech database was created at multiple SNRs: –10 dB, 
–5 dB, 0 dB, 5 dB, and 10 dB. 

For all experiments reported in this paper, the sampling rate 
of the speech database was reduced from 25 kHz to 16 kHz. 
The sampling rate of the noise was originally 16 kHz. All 
speech signals were normalized to have zero mean and unit 
variance, and were divided into frames of 32 ms in length with 
an overlap of 16 ms between adjacent frames. For each 
Hamming-windowed frame, a power spectral (magnitude 
spectrum) vector of 257 components was derived from a  
512-point DFT analysis, and the power spectral vector was 
then transformed into a log-mel spectral vector. The number of 
dimensions of the log-mel spectral vector was chosen to be 128. 

2. Results of Speech Enhancement 

To validate the performance of the speech enhancement from 
a noisy signal, we compared the waveforms and spectrograms of 
the original speech signal, the noisy signal, and the enhanced 
speech signal using the proposed method. The output SNR was 
computed to evaluate the performance quantitatively. The 
conventional magnitude-based estimator (baseline) [3] was used 
as a reference for a performance comparison. 

A. Waveform and Spectrogram 

Figures 4 and 5 show examples of the waveforms and 
spectrograms of the original signal, the noisy speech signal, 
and the enhanced speech signals, where the N3 noise was 
added to make the noisy signal at a 0 dB SNR. The MMSE-
based and MAP-based a priori SNR estimators were used to 
refine the phase-dependent a priori SNR. 

The DD approach was used in both the proposed method 
and the conventional DD magnitude-based method (baseline 
method). Comparing the waveforms and spectrograms, we 
confirmed that the noise was suppressed remarkably to yield an 
enhanced speech signal. In addition, in the listening tests using 
re-synthesized speech, we could hardly hear any background 
noise. 

B. Output SNR 

We also calculated the output SNR of the enhanced speech 
signals, which is defined as the ratio of the power of the 
original clean speech signal and the power of the error signal 
between the original signal x(t) and the enhanced signal. It can 
be computed as follows: 

 
2

10 2

| |
10log ,

ˆ| | | |

X
SNR

X X

 
 
  

       (31) 
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Fig. 4. Speech waveforms when N3 noise is added at 0 dB SNR:
(a) original speech signal, (b) noisy signal, (c) enhanced
signal using the conventional DD method, (d) enhanced
signal using the proposed MMSE-based method, and (e)
enhanced signal using the proposed MAP-based method.
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where | |X  represents the magnitude spectrum of the clean 
speech signal and ˆ| |X  represents the magnitude spectrum of 
the reconstructed signal.  

Table 1 gives the average SNR with respect to the speech 
signals under the N1 noise condition using both the 
conventional DD magnitude-based method and the proposed 
phase-dependent a priori SNR estimator. Tables 2 and 3 show 
the averages SNR for the N2 and N3 noise conditions, 
respectively.   

When the MMSE-based a priori estimator is used to refine 
the estimated a priori SNR, the proposed phase-dependent 
speech enhancement algorithm effectively improves the output 
SNR by 3.1 dB, 2.0 dB, and 2.8 dB for the N1, N2, and N3  

 

Fig. 5. Spectrograms when N3 noise is added at 0 dB SNR: (a) 
original speech signal, (b) noisy signal, (c) enhanced 
signal using the conventional DD method, (d) enhanced 
signal using the proposed MMSE-based method, and (e) 
enhanced signal using the proposed MAP-based method.
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noise conditions, on average, compared to the conventional 
DD magnitude-based estimator (baseline method) [3], as 
shown in Tables 1 through 3. Overall, the proposed method 
improves the SNR by 2.6 dB on average for the N1, N2, and 
N3 noise conditions compared with the baseline. 

In the case of using the MAP-based a priori SNR estimator, 
the proposed algorithm improves the output SNR by 3.1 dB,  
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Table 1. Comparison of output SNRs (dB) for the N1 (car) noise.

Proposed method 
Input SNR 

(dB) 
Baseline 
method Step 1 

(before refine) 

Step 2 

(MMSE) 

Step 2 

(MAP) 

–10 1.5 4.2 4.4 4.3 

–5 2.4 5.4 5.7 5.7 

0 3.3 7.2 7.5 7.4 

5 5.0 7.8 8.1 8.0 

10 6.5 8.3 8.5 8.5 

Average 3.7 6.6 6.8 6.8 

 

Table 2. Comparison of output SNRs (dB) for the N2 (babble) noise.

Proposed method 
Input 

SNR(dB) 
Baseline 
method Step 1 

(before refine) 

Step 2 

(MMSE) 

Step 2 

(MAP) 

–10 2.2 5.0 5.2 5.3 

–5 4.0 6.1 6.3 6.3 

0 6.0 7.5 7.9 7.8 

5 6.7 7.8 8.1 8.0 

10 7.1 8.1 8.4 8.3 

Average 5.2 6.9 7.2 7.1 

 

Table 3. Comparison of output SNRs (dB) for the N3 (white 
Gaussian) noise. 

Proposed method 
Input 

SNR(dB) 
Baseline 
method Step 1 

(before refine) 

Step 2 

(MMSE) 

Step 2 

(MAP) 

–10 1.2 3.5 3.9 3.8 

–5 1.7 4.1 4.5 4.3 

0 2.7 5.3 5.7 5.6 

5 4.0 6.8 7.0 7.1 

10 5.7 8.0 8.2 8.1 

Average 3.1 5.5 5.9 5.8 

 

 
1.9 dB, and 2.7 dB for the N1, N2, and N3 noise conditions, 
respectively, on average, compared to the baseline. The 
MMSE-based a priori SNR estimator has slightly better output 
SNR improvement than the MAP-based estimator, and it could 
be confirmed that both estimators solve the delay problem. 

Overall, the proposed method improves the SNR by 2.6 dB 
on average for all noise conditions. In all cases, the proposed 
algorithm was better than the baseline in the output SNR 
measurements and outperformed stationary noise conditions 
such as N3. These results show that the proposed method  

significantly improves the objective quality measures by 
utilizing the phase information.  

Table 4 provides the average SNR and the Perceptual 
Evaluation of Speech Quality (PESQ) for an enhanced speech 
using different mel spectrum dimensions of 23, 32, 64, and 128 
at 0 dB SNR, where the MMSE-based method is used under 
the white Gaussian (N3) noise condition. Table 5 shows the 
average SNR and PESQ for an enhanced speech signal using 
the MAP-based method to refine the estimated a priori SNR. 
The enhanced speech signal is obtained by extracting the 
speech feature in the log-mel domain, enhancing the speech, 
transforming the enhanced log-mel spectrum into the power 
spectral domain again, and reconstructing the speech signal. 
When the relatively lower dimensions of the mel spectrum are 
applied, as in the 23 and 32 cases, the signals are lumped 
together while being resynthesized, which causes a 
performance degradation of the proposed speech enhancement 
algorithm. In this work, we chose 128 mel spectrum 
dimensions, which improves the performance significantly and 
outputs the most similar waveform with the original speech 
signal after speech enhancement. 

Figure 6 shows the average PESQ with respect to the speech 
signals under the N3 noise condition using the conventional 
DD method and the proposed phase-dependent a priori SNR 
estimators. Overall, the proposed methods improve the PESQ 
on average. In addition, the proposed method with the MMSE- 

 

Table 4. Average output SNR (dB) and PESQ of enhanced speech 
signal according to the mel-spectrum dimension (MMSE, 
N3, 0 dB). 

Proposed method Mel-spectrum 
dimension Output SNR (dB) PESQ 

23 2.2 1.61 

32 4.2 2.53 

64 7.7 2.77 

128 7.9 2.91 

 

Table 5. Average output SNR (dB) and PESQ of enhanced speech 
signal according to the mel-spectrum dimension (MAP, N3, 
0 dB). 

Proposed method Mel-spectrum 
dimension Output SNR (dB) PESQ 

23 2.3 1.61 

32 4.1 2.51 

64 7.6 2.75 

128 7.8 2.89 
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Fig. 6. Average PESQ of enhanced speech signal (N3). 
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based a priori SNR estimator improves the PESQ by 0.3 for  
–10 dB and –5 dB, 0.4 for 0 dB and 5 dB, and 0.1 for 10 dB, 
on average, compared with the conventional DD approach.  

Using the MAP-based estimator, the proposed method 
improves the PESQ by 0.2 for –10 dB, 0.3 for –5 dB and 0 dB, 
0.4 for 5 dB, and 0.1 for 10 dB, on average, compared with the 
baseline. As the phase component of the speech signal is 
relatively more insensitive to human ears than the magnitude 
component, the speech enhancement performance does not 
increase as much. 

V. Conclusion 

We proposed a new single-channel speech enhancement 
method that estimates the phase-dependent a priori SNR in the 
log-mel spectral domain by considering the magnitude 
components of the speech signal and the phase components. In 
the proposed method, the phase term is no longer assumed to 
be zero because the power spectral vectors of noisy signals are 
nonlinearly transformed into the log-mel spectral vectors. The 
new phase-dependent a priori SNR is recursively updated by 
adopting the DD approach. The estimated phase-dependent a 
priori SNR is then refined to solve the delay problem while 
maintaining the advantages of the decision-directed (DD) 
approach. In this paper, the MMSE-based and MAP-based a 
priori SNR estimator is used to refine the estimated a priori 
SNR of the DD approach. 

By providing the waveforms and spectrograms of the 
enhanced speech signal, we showed that the enhanced signal 
was close to the original signal. In the listening tests, we could 
hardly hear any residual noise from the enhanced signal. In the 
quantitative evaluation tests, the proposed method with the 
MMSE-based a priori SNR estimator was shown to improve 
the output SNR by 3.1 dB, 2.0 dB, and 2.8 dB for car, babble, 
and white Gaussian noise, respectively. In addition, when the 
MAP-based a priori SNR estimator is used, the proposed 

method improves the output SNR by 3.1 dB, 1.9 dB, and   
2.7 dB for the same noise conditions. 

The experimental results confirmed that the phase 
information is useful and can be used together with the 
magnitude information for improved speech enhancement 
systems. 
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