• Title/Summary/Keyword: minimum order

Search Result 2,748, Processing Time 0.035 seconds

Design of a Disturbance Observer Using a Second-Order System Plus Dead Time Modeling Technique (시간 지연을 갖는 2차 시스템 모델링 기법을 이용한 외란 관측기 설계)

  • Jeong, Goo-Jong;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.187-192
    • /
    • 2009
  • This paper presents a method for designing a robust controller that alleviates disturbance effects and compensates performance degradation owing to the time-delay. Disturbance observer(DOB) approach as a tool of robust control has been widely employed in industry. However, since the Pade approximation of time-delay makes the plant non-minimum phase, the classical DOB cannot be applied directly to the system with time-delay. By using a new DOB structure for non-minimum phase systems together with the Smith Predictor, we propose a new controller for reducing the both effects of disturbance and time-delay. Moreover, the closed-loop system can be made robust against uncertain time-delay with the help of a Pill controller tuning method that is based on a second-order plus dead time modeling technique.

A Framework for Determining Minimum Load Shedding for Restoring Solvability Using Outage Parameterization

  • Hwachang Song;Lee, Byongjun
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.73-78
    • /
    • 2004
  • This paper proposes a framework for determining the minimum load shedding for restoring solvability. The framework includes a continuation power flow (CPF) and an optimal power flow (OPF). The CPF parameterizes a specified outage from a set of multiple contingencies causing unsolvable cases, and it traces the path of solutions with respect to the parameter variation. At the nose point of the path, sensitivity analysis is performed in order to achieve the most effective control location for load shedding. Using the control location information, the OPF for locating the minimum load shedding is executed in order to restore power flow solvability. It is highlighted that the framework systematically determines control locations and the proper amount of load shedding. In a numerical simulation, an illustrative example of the proposed framework is shown by applying it to the New England 39 bus system.

Basic study on hysteresis modeling using micromagnetics for magnetic field analysis (미소자성체를 이용한 자기히스테리시스 모델 연구)

  • Cheon, Yeong-Jin;Kim, Jong-Tae;Wee, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.83-85
    • /
    • 2007
  • In magnetic field analysis of electrical machines, hysteresis phenomena of B-H curves should be taken into account in order to obtain more accurate results. In this paper, the hysteresis modeling using the micromagnetics for the magnetic field analysis is investigated. In the micromagnetics, usually, it takes much CPU times. Therefore, the method for representing hysteresis phenomena by minimum modeling is investigated in order to applying it to the magnetic field analysis. First, the micromagnetics is described. Then, the method of minimum modeling is shown. Finally, the hysteresis curve obtained by the minimum modeling is demonstrated. The effect of parameters of micromagnetics on the shape of hysteresis curve is investigated.

  • PDF

DOMINATION IN DIGRAPHS

  • Lee, Chang-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.843-853
    • /
    • 1998
  • We establish bounds for the domination number of a digraph in terms of the minimum indegree and the order, and then we find a sharp upper bound for the domination number of a weak digraph with minimum indegree one. We also determine the domination number of a random digraph.

  • PDF

Resolution of kinematic redundancy using contrained optimization techniques under kinematic inequality contraints

  • Park, Ki-Cheol;Chang, Pyung-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.69-72
    • /
    • 1996
  • This paper considers a global resolution of kinematic redundancy under inequality constraints as a constrained optimal control. In this formulation, joint limits and obstacles are regarded as state variable inequality constraints, and joint velocity limits as control variable inequality constraints. Necessary and sufficient conditions are derived by using Pontryagin's minimum principle and penalty function method. These conditions leads to a two-point boundary-value problem (TPBVP) with natural, periodic and inequality boundary conditions. In order to solve the TPBVP and to find a global minimum, a numerical algorithm, named two-stage algorithm, is presented. Given initial joint pose, the first stage finds the optimal joint trajectory and its corresponding minimum performance cost. The second stage searches for the optimal initial joint pose with globally minimum cost in the self-motion manifold. The effectiveness of the proposed algorithm is demonstrated through a simulation with a 3-dof planar redundant manipulator.

  • PDF

An Implementation of Inverse Filter for Sound Reproduction of Non-Minimum Phase System. (비최소 위상 시스템에서 음재생을 위한 역변환 필터의 구현)

  • 노경래;이상권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.997-1002
    • /
    • 2001
  • This paper describes an implementation of inverse filter using SVD in order to recover the input in multi-channel system. The matrix formulation in SISO system is extended to MIMO system. In time and frequency domain we investigates the inversion of minimum phase system and non-minimum phase system. To execute an effective inversion of non-minimum phase system, SVD is introduced. First of all we computes singular values of system matrix and then investigates the phase property of system. In case of overall system is non-minimum phase, system matrix has one (or more) very small singular value(s). The very small singular value(s) carries information about phase properties of system. Using this property, approximate inverse filter of overall system is founded. The numerical simulation shows potentials in use of the inverse filter.

  • PDF

A Study on Dust Explosion Characteristics of Hydroxypropyl Methyl Cellulose (Hydroxypropyl Methyl Cellulose의 분진 폭발특성에 관한 연구)

  • 임우섭;목연수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.95-100
    • /
    • 2000
  • This study was performed in Hartmann type dust explosion apparatus in order to research the dust explosion characteristics of hydroxypropyl methyl cellulose(HPMC): minimum explosive limit, minimum ignition energy, limiting oxygen concentration, maximum explosion pressure, rate of pressure rise, etc. The samples of HPMC dust were distributed into 120-140 mesh, 170-230 mesh and 325 under, and the gap distance of the discharge electrode was setted up at 5mm. The experimental results were obtained as follows: (1) The minimum explosive limit for HPMC dust was founded at 180g/㎥. the minimum ignition energy at 9.8mJ and the limiting oxygen concentration at 12%. (2) The maximum explosion pressure of HPMC dust was $8.1kg/cm^2\;{\cdot}\;$abs at the concentration of $500g/m^3$ and the maximum rate of pressure rise was 203.98 bar/sec at the concentration of $480g/m^3$ for 325 under.

  • PDF

Disturbance Observer Design for a Non-minimum Phase System That Is Stabilizable via PID Control (PID 제어기로 안정화 가능한 비최소 위상 시스템에 대한 외란 관측기 설계)

  • Son, Young-Ik;Kim, Sung-Jong;Jeong, Goo-Jong;Shim, Hyung-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1612-1617
    • /
    • 2008
  • Since most disturbance observer (DOB) approaches have been limited to minimum-phase systems (or systems having no zero dynamics), we propose a new DOB structure that can be applied to non-minimum phase systems. The new structure features an additional system, which is called as V-filter, whose role is to yield a minimum phase system when connected with the plant in parallel. In order to design the V-filter systematically we first consider a class of linear systems that can be stabilized via PID controller. By inverting the controller's transfer function, we can simply construct the filter. A convenient way of designing V-filter is presented by using an iterative linear matrix inequality (LMI) algorithm. With an illustrative example the simulation result shows that substantial improvement in the performance has been achieved compared with the control system without the DOB.

A Study on the Optimum Design of Cargo Tank for the LPG Carriers Considering Fabrication Cost (건조비를 고려한 LPG 운반선 화물창의 최적설계에 관한 연구)

  • Shin, Sang-Hoon;Hwang, Sun-Bok;Ko, Dae-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.178-182
    • /
    • 2011
  • Generally in order to reduce the steel weight of stiffened plate, stiffener spaces tend to be narrow and the plate gets thin. However, it will involve more fabrication cost because it can lead to the increase of welding length and the number of structural members. In the yard, the design which is able to reduce the total fabrication cost is needed, although it requires more steel weight. The purpose of this study is to find optimum stiffener spaces to minimize the fabrication cost for the cargo tank of LPG Carriers. Global optimization methods such as ES(Evolution Strategy) and GA(Genetic Algorithm) are introduced to find a global optimum solution and the sum of steel material cost and labor cost is selected as main objective function. Convergence degree of both methods in according to the size of searching population is examined and an efficient size is investigated. In order to verify the necessity of the optimum design based on the cost, minimum weight design and minimum cost design are carried out.

Performance Analysis of Frequent Pattern Mining with Multiple Minimum Supports (다중 최소 임계치 기반 빈발 패턴 마이닝의 성능분석)

  • Ryang, Heungmo;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2013
  • Data mining techniques are used to find important and meaningful information from huge databases, and pattern mining is one of the significant data mining techniques. Pattern mining is a method of discovering useful patterns from the huge databases. Frequent pattern mining which is one of the pattern mining extracts patterns having higher frequencies than a minimum support threshold from databases, and the patterns are called frequent patterns. Traditional frequent pattern mining is based on a single minimum support threshold for the whole database to perform mining frequent patterns. This single support model implicitly supposes that all of the items in the database have the same nature. In real world applications, however, each item in databases can have relative characteristics, and thus an appropriate pattern mining technique which reflects the characteristics is required. In the framework of frequent pattern mining, where the natures of items are not considered, it needs to set the single minimum support threshold to a too low value for mining patterns containing rare items. It leads to too many patterns including meaningless items though. In contrast, we cannot mine any pattern if a too high threshold is used. This dilemma is called the rare item problem. To solve this problem, the initial researches proposed approximate approaches which split data into several groups according to item frequencies or group related rare items. However, these methods cannot find all of the frequent patterns including rare frequent patterns due to being based on approximate techniques. Hence, pattern mining model with multiple minimum supports is proposed in order to solve the rare item problem. In the model, each item has a corresponding minimum support threshold, called MIS (Minimum Item Support), and it is calculated based on item frequencies in databases. The multiple minimum supports model finds all of the rare frequent patterns without generating meaningless patterns and losing significant patterns by applying the MIS. Meanwhile, candidate patterns are extracted during a process of mining frequent patterns, and the only single minimum support is compared with frequencies of the candidate patterns in the single minimum support model. Therefore, the characteristics of items consist of the candidate patterns are not reflected. In addition, the rare item problem occurs in the model. In order to address this issue in the multiple minimum supports model, the minimum MIS value among all of the values of items in a candidate pattern is used as a minimum support threshold with respect to the candidate pattern for considering its characteristics. For efficiently mining frequent patterns including rare frequent patterns by adopting the above concept, tree based algorithms of the multiple minimum supports model sort items in a tree according to MIS descending order in contrast to those of the single minimum support model, where the items are ordered in frequency descending order. In this paper, we study the characteristics of the frequent pattern mining based on multiple minimum supports and conduct performance evaluation with a general frequent pattern mining algorithm in terms of runtime, memory usage, and scalability. Experimental results show that the multiple minimum supports based algorithm outperforms the single minimum support based one and demands more memory usage for MIS information. Moreover, the compared algorithms have a good scalability in the results.