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DOMINATION IN DIGRAPHS
CHANGWOO LEE

ABSTRACT. We establish bounds for the domination number of a
digraph in terms of the minimum indegree and the order, and then
we find a sharp upper bound for the domination number of a weak
digraph with minimum indegree one. We also determine the domi-
nation number of a random digraph.

1. Introduction

Let D be a digraph of order n. A subset S of the vertex set V(D)
is a dominating set of D if for each vertex v not in S there exists a
vertex u in S such that (u,v) is an arc of D. Note that V(D) itself
is a dominating set of D. A dominating set of D with the smallest
cardinality is called a minimum dominating set of D and its cardinality
is the domination number of D. We will reserve a(D) or just o for the
domination number of D. For subsets S and T of V (D), we say that
S dominates T if S is a dominating set of the subdigraph D[S U T
spanned by SUT.

For each positive integer n and each number p with 0 < p < 1, the
probability space Dy, of digraphs is defined as follows: Each point
in the space is a digraph with vertex set V = {1,2,--- ,n} having no
loops or multiple arcs, and the probability of a given digraph D with
| arcs is given by P(D) = p*(1 — p)*(»~1=! In other words, each arc
is present with probability p, independently of the presence or absence
of other arcs. For definitions not given here see [2] or [3].

Our main object here is to establish a tight upper bound for the dom-
ination number of a digraph and to determine the domination number
of a random digraph. In section 2 we show that the domination number
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a(D) satisfies

1 1467
Dy<di- (L ) 4L )"
(D) < 1+0- 1+0- "

for any digraph D with order n and minimum indegree 6~ > 1 and
show that 5
a(D) < =n
(D)<
for any digraph with order n and minimum indegree one. In section 3
we show that a random digraph D, € D, , has domination number
either

|k*| +1or [k"]+2

almost surely, where k* = logn — 2loglogn + loglog e and log denotes
the logarithm with base 1/(1 — p).

2. The domination number of a digraph

Let X be a random variable on a probability space €, and let E[X]
be the expectation of X. Then we know that if E[X] < ¢ for some
constant ¢, there is an s € Q such that X(s) <c. Let X;,X2,---, X,
be random variables, and let X = ¢1.X; + --- + ¢, X,,, where ¢;’s are
constants. Linearity of expectation states that E[X] = c; E[X1]+- -+
en B[ X5

Using these simple observations, we prove the following theorem.

THEOREM 1. Let D be a digraph with order n and minimum inde-
gree 0~ > 1. Then D has a dominating set of size at most

. 1\ 1\
”<1+6—> +<1+6—) n

Proof. The proof technique follows the same pattern used by Alon
and Spencer in [1] for graphs.

Fix p with 0 < p < 1. Let us select, randomly and independently,
each vertex of V = V(D) with probability p. Let S be the random set
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of all vertices selected, and let T be the random set of all vertices not in
S that do not have any in-neighbors in S. Then the expectation E{|S]]

of the random variable |S| is E[|S|] = np since |S| has a binomial
distribution with parameters n and p. To find E[|T|], we let |T| =
ZvEV Xv, Where x, =1 if v € T and x, = 0 otherwise. Note that

P(v € T) = P(v and its in-neighbors are not in S)
— (1 o p)1+id(v)

<(1-p)tte

for each v € V. Thus, we have

E(T=E]_ x) =) Elxl

veV veEV
= Z PveT)<n(l-p)tto .
veV
Therefore, we have
(1) E[S|+|T|] < np+n(1l —p)1+e .

Using elementary calculus, we minimize the right side of (1) with
respect to p. Then the minimum value of it is

1487

1 1 a% 1 5—
_(1+6—) +(1+5—> ™

which is attained when
1 ! -
P=2=\17¢ '

This means that there is at least one choice of S such that

146

1 6% 1 5
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The set SUT is clearly a dominating set of D whose cardinality is at

most
146~

. 1\ 1 5=
_<1+6-) +<1+<5—> n-

This completes the proof. a

This theorem gives us a good upper bound for the domination num-
ber of a digraph with large minimum indegree. The coefficient of this
upper bound goes to zero when the minimum indegree 6~ goes to in-
finity.

REMARK. Let GG be an undirected graph with order n and minimum

degree . Then, using the same argument as in Theorem 1, we can show
that the domination number of G is at most

o () ()}

L. Lovéasz showed in [5] that the domination number of G is at most
1+1né

(3) 1+4

and N. Alon and J. Spencer found a similar upper bound
1+In(6+1)

4 bt S 4

(4) 1+5

in [1]. Even though these three upper bounds for the domination num-

ber of an undirected graph are asymptotically the same, our result (2)
is smaller than (3) and (4) for § > 4.

n,

It is easy to see that the domination number of a digraph D is
the sum of the domination numbers of all weak components of D.
Therefore, we consider weak digraphs with minimum indegree at least
one. Then, what is the domination number of a digraph in which every
vertex has indegree one? Such a digraph is called a contrafunctional
digraph. A vertex v of a digraph D is called a source of D if every
vertex is reachable from v, and a tree from a vertex (or arborescence)
is a digraph with a source but with no semicycles. A (directed) star
S, is a digraph on n vertices consisting of a center v and a set of arcs
from v to V(Sy,) — {v}.
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LEMMA 2 ([4]). A weak digraph is a tree from a vertex if and
only if exactly one vertex has indegree zero and every other vertex has
indegree one.

We need the above lemma to prove the following.

THEOREM 3. Every tree T from a vertex v has domination number
1
1<a(T) < [V,

Moreover, the bounds are sharp.

Proof. We shall state an algorithm which finds a dominating set for
a tree T from a vertex v. This algorithm begins by selecting a largest
star that is the farthest from the source v. Then we put the center of
the star into a dominating set. Next we remove the vertices in the star
from T to get a new tree from a vertex and repeat this process.
Algorithm: Let Ty = T be the given tree from the vertex v, and let
So =0. Put ¢ =1 and go to (1).
(1) Take a vertex v; with maximum distance from v in T;.
(2) If v; = v, then let S = S;_; U {v} and stop. If v; # v (i.e,
tdr, (vi) = 1), let u; be the vertex of T; that is adjacent to v;
and go to (3).
(3) If odr,(u;) = 1 and u; = v, then let S = S;_; U {u;} and stop.
If odr,(u;) = 1 and u; # v, then let S; = S;_1 U {u;} and
Ti+1 = T; — {u;,v;} and next return to (1) putting ¢ = ¢ —1. If
odr,(u;) > 2, go to (4).
(4) If u; = v, then let S = 5,1 U {v} and stop. If u; # v, then let
S; = Si—1U{u;} and T; 41 = T; — N*{u;], and next return to
(1) putting i = ¢+ 1.
From this algorithm, it is easily seen that S is a dominating set for
T and that |S} < [1|V(T)|] since in each step except (possibly) the
last, we take at least two vertices and put only one vertex into S that
dominates the rest of them.
Extremal digraphs are a star S,, on n vertices and a path P, on n
vertices. a

Here we note that the complexity of this algorithm is O(n?), where
n=|V(T)|.
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LEMMA 4 ([4]). The following statements are equivalent for a weak
digraph D.
(1) D is contrafunctional.
(2) D has exactly one cycle C and the removal of any one arc of C
results in a tree from a vertex.

The removal of any arc in a given digraph never decreases its dom-
ination number. Therefore, combining Theorem 3 and Lemma 4, we
have the following corollary.

COROLLARY 5. Every weak contrafunctional digraph D has domi-
nation number

1<a(D) < [5 VD

Moreover, the bounds are sharp.

Proof. To see the latter, we construct a digraph D as follows. We
add one new vertex u to a star S,_; and add two new arcs between u
and the center of S,,_1. Then D is an extremal digraph, and a cycle
C,, will do for the other extreme. O

If a digraph D has a spanning subdigraph H of D such that H is
a disjoint union of stars, then H is called a vertez disjoint star cover
(vds-cover) of D.

THEOREM 6. Let D be a digraph with order n and minimum inde-
gree 6~ > 1. Then, we have

0" +1
< < ——n.
l<a(D)< 2%~ +1"

Proof. It is easy to see that D has a vds-cover H, namely, take H as
the empty digraph on V(D). Among all such vds-covers of D, let H*
be one with minimum number of copies of S;. For each k =1,2,---,
let H}: be the subdigraph of H* consisting of weak components that are
isomorphic to Sk and let hy denote the number of weak components in

First, the subdigraph of D induced by V (H7) has no arcs at all since
otherwise, H* violates the minimality. Next, there are no arcs of D
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from vertices in | J, 5 H} to vertices in H{ because if not, H* violates
the minimality also. However, each vertex in H} is the terminal vertex
of at least 6~ arcs. Hence these arcs must be incident from vertices
in Hy. Let uv be a star in Hj with center u. Then, because of the
minimality of H*, u is not adjacent to any vertex in HY and v is
adjacent to at most one vertex in Hy. Since each vertex in H{ has
indegree at least 67, we have ho > §h;.

Now let S be the set of all centers of the stars in H*. Then S is a
dominating set of D and |S| = }_,5; h;. Note that

0" +1 > 1
26—4+1 714
for i = 3,4, -- and that
6 +1 . ho — 6~ hy
%+ l(hl + 2h2) — (h1 + hg) = 1 >0.
Since
V(D) =n=>ih,
i>1
we have
6 +1 0~ +1 0~ +1 .
% it T2 i)t ; 251
> (ha+ha) + > hi=|S.
i>3
This completes the proof. O

This theorem gives a better upper bound for the domination number
of a digraph with §~ = 1 or 2 than that of Theorem 1.

COROLLARY 7. Let D be a weak contrafunctional digraph. Then
we have the following:

(1) a(D) = 2|V| if and only if D = Cs.

(2) a(D) < 2|V| if and only if D # Cs.
Here, C5 denotes a directed 3-cycle.
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Proof. (1) The sufficiency is trivial. For the necessity, first note that
for integer n > 2, 2n < [2] iff n = 3. Suppose that a(D) = 2|V|.
Then 2|V| = a(D) < [4|V]] by Corollary 5 and so [V| = 3 by the
note. Moreover, C3 is the only digraph on 3 vertices whose domination
number is 2. This completes the proof of the first part.

(2) Since a weak contrafunctional digraph D has 6~ = 1, we have
a(D) < %|V| by Theorem 6, and so the second part follows. O

THEOREM 8. Let D be a contrafunctional digraph. Then we have
the following:

(1) o(D) = %|V| if and only if D is a disjoint union of 3-cycles.
(2) a(D) < £|V| if and only if D is not a disjoint union of 3-cycles.

Proof. (1) The sufficiency is trivial. To prove the necessity, let
a(D) = 2|V| and let {Hy,Hy,--- , H;} be the set of weak components
of D. Suppose that there exists a component that is not a 3-cycle.
Then by Corollary 7, we have

2 ! ! 2
slVI=a(D)=3 a(H) <) SIV(H)| =3IV,
=1

i=1

which is a contradiction. Thus every weak component of D is a 3-cycle
and hence D is a disjoint union of 3-cycles.

(2) Suppose that D is not a disjoint union of 3-cycles and let
{Hy,Hs,--- ,H;} be the set of weak components of D. Then all H;’s
are weak contrafunctional digraphs, and H; # Cs for some :. Hence
we have

l l
a(D) = Y a(H;) < 3 2V (H)| = 51V]

3
=1 =1

and so the sufficiency has been established.
To prove the necessity, we let (D) < 2|V| and assume D is a
disjoint union of 3-cycle Z/s. Then we have

a(D) =Y a(2) =3 2IV(Z)| = 31V

i>1 i>1
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which contradicts a(D) < %|V[ Therefore D is not a disjoint union of
3-cycles. O

The bound in Theorem 6 can be sharpened for weak digraphs with
3k vertices as follows.

THEOREM 9. Let D be a weak digraph with minimum indegree
0~ =1 and let |V(D)| = n. Then we have the following:

(1) Ifn =10 (mod 3) and n > 6, then 1 < (D) < $n — 1.

(2) Ifn=1 (mod 3) and n > 4, then 1 < (D) < | 3n].

(3) Ifn=2 (mod 3) and n > 2, then 1 < (D) < | 3n].
Moreover, all bounds are sharp.

Proof. Since (2) and (3) are the same as Theorem 6, it suffices to
prove (1). For each vertex in D, color one incoming arc green and the
others red and next choose only green arcs. Then we have a spanning
contrafunctional subdigraph H of D. First, consider the case that H
is not a disjoint union of 3-cycles. Clearly, a(D) < a(H) < %n by
Theorem 8 and hence a(D) < %n — 1. Next, consider the case that A
is a disjoint union of 3-cycles. Since D is weak but H is not, the arc
set E(D) of D consists of E(H) and some arcs not in H. In addition,
if we add some arcs in E(D) — E(H) to H, then the resulting digraph
has a strictly smaller domination number than that of H. Therefore,
o(D) < a(H) = %n and hence o(D) < %n — 1. This completes the
proof of (1).

For the sharpness of the lower bound in all cases, we take a digraph
D as follows:

V(D) = {UlavZa e )Un}y
E(D) = {vov1,v102,0103, -+ + ,V1Un }.

For an extremal digraph of the case (1), we define a digraph D as
follows: Take a disjoint union of k 3-cycles Z, Zs,--- , Zk, and let v;
be a vertex in Z; for each ¢. Add k—1 new arcs v;v; fori =2,3,--- ,k,
and let D be the resulting digraph. Next, for an extremal digraph of
the case (2), we define a digraph as follows: Take a disjoint union of
k 3-cycles Z1,Z5,--- ,Z; and a new vertex u. Let v; be a vertex in
Z; for each i. Add k new arcs v;u and let D be the resulting digraph.
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Finally, for an extremal digraph of the case (3), we define a digraph D
as follows: Take a disjoint union of k& 3-cycles and a 2-cycle Cs. Let u
be a vertex in C5 and v; in Z;. Add k new arcs v;u and let D be the
resulting digraph. O

OPEN PROBLEM. We have shown in Theorem 9 that the upper
bound

0 +1
ST
in Theorem 6 is sharp for infinitely many n when 6~ = 1. For 6~ = 2,
can we either sharpen this upper bound or construct a digraph with
order n and = = 2 whose domination number is L—%__i_‘ﬁnj ?

3. The domination number of a random digraph

Let Q be a property of digraphs. If A is the set of digraphs of
order n with property Q and the probability P(A) of A has limit 1 as
n — 00, then we say almost all digraphs have property Q or a random
digraph has property Q almost surely.

K. Weber determined the domination number for almost all graphs
[6]. Using the same techniques as in [6] for analyzing the first and the
second moments, we establish a similar result for digraphs.

THEOREM 10. For p fixed, o < p < 1, a random digraph D, € D, ,,
has domination number either

k%] +1 or |K*] +2

almost surely, where k* = logn — 2loglogn + logloge and log denotes
the logarithm with base 1/(1 — p).

Proof. Let X be a nonnegative random variable such that X (D) is
the number of dominating k-sets in D,, for each D, € Dy ;. Since P(a
fixed vertex v does not dominate another fixed vertex u) = 1—p := g, we
have P(a fixed k-set K C V does not dominate a fixed vertex in V —
K) = ¢* and hence P(a fixed k-set of vertices is a dominating set) =
(1 — g*¥)"~*k. Therefore the expected value of X is

Bix) = ()= g,
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Now the result comes from [6]. a
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