• Title/Summary/Keyword: minimum life-cycle cost

Search Result 44, Processing Time 0.03 seconds

A Study on Optimal Developmental Cost for Quality Factors of Integrated Information Security Systems (통합정보보호시스템의 최적 품질 확보를 위한 최소개발비용 탐색에 관한 연구)

  • Park, You-Jin;Choi, Myeong-Gil
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • To protect information resources, many organizations including private corporate and government employ integrated information security systems which provide the functions of intrusion detection, firewall, and virus vaccine. So, in order to develop a reliable integrated information security system during the development life cycle, the managers in charge of the development of the system must effectively distribute the development resources to the quality factors of an integrated information security system. This study suggests a distribution methodology that minimizes the total cost with satisfying the minimum quality level of an integrated information security system by appropriately assigning development resources to quality factors considered. To achieve this goal, we identify quality factors of an integrated information system and then measure the relative weights among the quality factors using analytic hierarchy process (AHP). The suggested distribution methodology makes it possible to search an optimal solution which minimizes the total cost with satisfying the required quality levels of processes by assigning development resources to quality factors during the development life cycle.

ROADWAY PERFORMANCE EVALUATION USING FUNCTION ANALYSIS METHOD OF VALUE ENGINEERING

  • Jong-Hyun Park;Yong-Jang Lee;In-Su Jung;Chan-Sik Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1528-1533
    • /
    • 2009
  • Infrastructure is provided to the user through long-term project period and large-scale working expenses. Existing facilities are getting old as time goes by. Accordingly, proper maintenance is required and generally more maintenance cost than initial invested cost is needed during life cycle. Therefore, a specific plan that just increases the value of facilities is required by evaluating performance of facilities and inputting minimum maintenance cost. Value engineering that increases the value of object by systemically analyzing Life Cycle Costs and function is actively promoted at the design phase of construction. These efforts can increase the performance of facilities at the maintenance phase of infrastructure. This study is to search how to evaluate the performance of Roadway by utilizing function analysis, as a core part of VE in the maintenance phase. In order to this a new evaluation criteria were proposed by adding an evaluation items to the existing criteria through the research of old documents, status of roadway maintenance and function analysis of VE. The results of this study may promote the effective performance evaluation to determine a resolution of roadway congestion in future. A succeeding study using the proposed evaluation criteria will be required.

  • PDF

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (II) Methodology for Life-Cycle Cost Analysis (교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (II) 생애주기비용해석 방법론)

  • Lee, Kwang-Min;Cho, Hyo-Nam;Chung, Jee-Seung;An, Hyoung-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.977-988
    • /
    • 2006
  • The goal of this study is to develop a realistic methodology for determination of the Life-Cycle Cost (LCC)-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges. The proposed methodology is based on the concept of minimum LCC which is expressed as the sum of present value of seismic retrofit costs, expected maintenance costs, and expected economic losses with the constraints such as design requirements and acceptable risk of death. The proposed methodology is applied to the LCC-effective optimal seismic retrofit and maintenance strategy of a steel bridge considered as a example bridge in the accompanying study, and various conditions such as corrosion environments and Average Daily Traffic Volumes (ADTVs) are considered to investigate the effects on total expected LCC. In addition, to verify the validity of the developed methodology, the results are compared with the existing methodology. From the numerical investigation, it may be positively expected that the proposed methodology can be effectively utilized as a practical tool for the decision-making of LCC-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges.

Cost Effectiveness Evaluation of Seismic Isolated Bridges in Low and Moderate Seismic Region (중약진 지역에서의 지진격리교량의 비용효율성 평가)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.440-447
    • /
    • 2000
  • In order to evaluate the cost effectiveness of seismic isolation for bridges in low and moderate seismic region, a method of calculation minimum life-cycle cost of seismic-isolated bridges under specific acceleration level and soil condition is developed. Input ground motion is modeled as spectral density function compatible with response spectrum for combination of acceleration coefficient and site coefficient. Failure probability is calculated by spectrum analysis based on random vibration theories to simplify repetitive calculations in the minimization procedure. Ductility of piers and its effects on cost effectiveness are considered by stochastic linearization method. Cost function and cost effectiveness index are defined by taking into consideration the characteristics of seismic isolated bridges. Limit states for calculation of failure probability are defined on superstructure, isolator and pier, respectively. The results of example design and analysis show that seismic isolation is more cost-effective in low and moderate seismic region than in high seismic region.

  • PDF

Progress of Applications and Studies on Earthquake Resistance Design of Bridges in Korea

  • Ha, Dong-Ho;Koh, Hyun-Moo;Ok, Seung-Yong;Lee, Sun-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.33-42
    • /
    • 2007
  • This paper describes the state-of-the art research activities on seismic isolation systems for improving the seismic capacities of the bridges in Korea. Though Korea is located in a region of low-to-moderate seismicity, the construction of seismic isolation systems has increased rapidly. The application of seismic isolation system has become popular worldwide because of its stable behavior and economical construction especially for bridge structures. Since optimal reliability level of isolated bridges can be determined as the one that provides the highest net life-cycle benefit to society, or the minimum Life-Cycle Cost (LCC), an optimal design procedure based on minimum LCC concept is more expedient for the design of seismically isolated bridges in areas of low-to-moderate seismicty. To verify the adequacy of the new design concept based on the LCC minimization, experimental studies on seismically isolated bridge are introduced as well, which include pseudo-dynamic test of scaled pier and dynamic field test of full-scale. With the application of seismic isolation systems, many kinds of dampers to improve the seismic capacity of structure are also applied not only to new bridges but also to existing bridges.

Techno-Economic Analysis and Life-Cycle Assessment for the Production of Hydrogen from Biogas (바이오가스 기반 수소 생산공정에 대한 경제성 및 환경성 분석)

  • KIM, HYUNWOO;BAEK, YOUNGSOON;WON, WANGYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.417-429
    • /
    • 2021
  • Due to fossil fuel depletion and environmental pollution, H2 production from organic waste has received an increased attention. In this study, we present an integrated process for the H2 production from biogas and evaluate the economic feasibility and sustainability via rigorous techno-economic analysis (TEA) and life-cycle assessment (LCA). Through the TEA, we determine the minimum H2 selling price using discounted cash flow analysis and investigate the main cost drivers. The environmental impact of the proposed process is quantified via LCA.

Cost-Effectiveness Evaluation of the Structure with Viscoelastic Dampers (점탄성감쇠기를 설치한 구조물의 비용효율성 평가)

  • 고현무;함대기;조상열
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.387-393
    • /
    • 2001
  • Installing vibration control devices in the structure rises as a solution instead of increasing structural strength considering construction cost. Especially, viscoelastic dampers show excellent vibration control performance at low cost and are easy to install in existing structures compared with other control devices. Therefore, cost-effectiveness of structure with viscoelastic dampers needs to be evaluated. Previous cost-effectiveness evaluation method for the seismically isolated structure(Koh et al., 1999;2000)is applied on the building structure with viscoelastic dampers, which combines optimal design and cost-effectiveness evaluation for seismically isolated structures based on minimum life-cycle cost concept. Input ground motion is modeled in the form of spectral density function to take into account acceleration and site coefficients. Damping of the viscoelastic damper is considered by modal strain energy method. Stiffness of shear building and shear area of viscoelastic damper are adopted as design variables for optimization. For the estimation of failure probability, transfer function of the structure with viscoelastic damper for spectral analysis is derived from the equation of motion. Results reveal that cost-effectiveness of the structure with viscoelastic dampers is relatively high in how seismic region and stiff soil condition.

  • PDF

Optimal Design of Power Grid and Location of Offshore Substation for Offshore Wind Power Plant (해상풍력발전단지의 전력망과 해상변전소 위치에 대한 최적 설계)

  • Moon, Won-Sik;Won, Jong-Nam;Huh, Jae-Sun;Jo, Ara;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.984-991
    • /
    • 2015
  • This paper presents the methodology for optimal design of power grid for offshore wind power plant (OWPP) and optimum location of offshore substation. The proposed optimization process is based on a genetic algorithm, where the objective cost model is composed of investment, power loss, repair, and reliability cost using the net present value during the whole OWPP life cycle. A probability wind power output is modeled to reflect the characteristics of a wind power plant that produces electricity through wind and to calculate the reliability cost called expected energy not supplied. The main objective is to find the minimum cost for grid connection topology by submarine cables which cannot cross each other. Cable crossing was set as a constraint in the optimization algorithm of grid topology of the wind power plant. On the basis of this method, a case study is conducted to validate the model by simulating a 100-MW OWF.

Estimation of Water Production Cost from Seawater Reverse Osmosis (SWRO) Plant in Korea (국내 해수담수화 플랜트 생산수 단가 추정)

  • Hwang, Moon-Hyun;Han, Doseon;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.4
    • /
    • pp.169-179
    • /
    • 2017
  • This study was conducted to supply information that can be utilized as data for desalination plant construction in the future by estimating unit cost of water production in the potential site of Incheon, Daesan, Yeosu, Busan, Ulsan and Sokcho in Korea. The production costs in Sokcho and Ulsan were similar to those of Busan and Yeosu. Those four sites showed better economic range due to low construction cost for intake facility compared to Incheon and Daesan. Although the salinity measured in the above 6 sites did not show perceptible effect on the production cost, the difference of seasonal seawater temperature needs to be considered due to the change of flux in reverse osmosis (RO) membrane. It turned out that the most critical parameters are the amortization in a year by the analysis of life cycle and the capacity of plant. Incheon and Daesan showed the difference of production cost up to 29% at the condition of amortization in 25 year, and up to 22% depending on plant capacity. However, the production cost in this study did not take into account of other indirect costs, therefore, this should be considered as the minimum cost.

On the Application for Minimum Server Cores in Public Sector (공공부문 도입서버의 최소코어수 적용에 관한 고찰)

  • Lee, Tae-Hoon;Ra, Jong-Hei
    • Journal of Digital Convergence
    • /
    • v.9 no.3
    • /
    • pp.213-223
    • /
    • 2011
  • Today, information resource management is key task in the data-centre as like as NCIA(National computing integration Agency of Korea). In IRM, the server's performance is one of the core elements, it must be importantly managed during whole of system life cycle. As first step of such management is in purchase phase, it is very important that the optimum specification is determined. The server's specification contains such as performance of core, criteria for performance verification, minimum cores, etc. There is constant controversy concerning the minimum cores. In this article, we present criteria for determination of the minimum cores that considered three aspects: (1) Costly aspect as TCO(Total Cost of Ownership, (2) Environmental aspect as Green IT (3) Technical aspect as RAS(Reliability, Availability, Serviceability) functionality. Finally, we propose scheme to ideally determinate the minimum cores.