• Title/Summary/Keyword: minimum foundation

Search Result 165, Processing Time 0.028 seconds

Stable Model for Active Contour based Region Tracking using Level Set PDE

  • Lee, Suk-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.666-670
    • /
    • 2011
  • In this paper, we propose a stable active contour based tracking method which utilizes the bimodal segmentation technique to obtain a background color diminished image frame. The proposed method overcomes the drawback of the Mansouri model which is liable to fall into a local minimum state when colors appear in the background that are similar to the target colors. The Mansouri model has been a foundation for active contour based tracking methods, since it is derived from a probability based interpretation. By stabilizing the model with the proposed speed function, the proposed model opens the way to extend probability based active contour tracking for practical applications.

Study on Hit Judgement Model of MMORPG - in case of Travia Online - (MMORPG 히트판정 모델에 관한 연구 - 트라비아 온라인을 중심으로 -)

  • Sohn Hyoung-Ryul
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.172-177
    • /
    • 2005
  • Hit judgement is essential factor in design for battle-style MMORPG game system and sets foundation for other game systems. Hit judgement model consists of attack power and attack rate. The former contains minimum, maximum, and critical attack, the latter has miss, hit, and critical blow rate. Random function generates one value of attack rate and consequently the damage is calculated. In this article, we propose hit judgement model which Is widely acceptable for generic MMORPG and describe the effort of applying the proposed model to Travia Online in detail.

  • PDF

APPLICATION OF SIMULATED ANNEALING FOR THE MATHEMATICAL MODELLING OF IMMUNE SYSTEMS

  • Lee, Kwon-Soon;Lee, Young-Jin;Chung, Hyeng-Hwan
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.129-132
    • /
    • 1992
  • Cellular kinetics formulate the basis of tumor immune system dynamics which may be synthesized mathematically as cascades of bilinear systems which are connected by nonlinear dynamical terms. In this manner, a foundation for the control of syngeneic tumors is presented. We have analyzed the mechanisms of controlling the infiltration of lymphocytes into tumor tissues. Simulated anneal ins, a general-purpose method of multivariate optimization, is applied to combinatorial optimization, which is to find the minimum of a given function depending on many parameters. We compare the results of the different methods including the global optimization algorithm, known as simutated annealing.

  • PDF

A Case Study on the Measurement and Estimation of Bearing Capacity of Large Diameter Bored Pile (대구경 현장타설말뚝의 지지력 측정 사례연구)

  • 이원제;정훈준;이우진;장기수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.285-292
    • /
    • 2000
  • Though there has been increasing use of large diameter drilled shaft as a foundation structure of bridges, current practice for quality control is to confirm the minimum required load carrying capacity during construction stage. For economic and appropriate design of drilled shaft, it is necessary to evaluate the load transfer mechanism by pile load tests during initial stage of construction and to use the test results as a feedback to a revision of initial design. In this paper, results of load tests peformed at several domestic sites are presented to investigate the load transfer characteristics of large diameter drilled shaft. It was found that most of the load on piles is sustained by shaft friction and that only small portion of the load reaches the bottom of the drilled shaft. Some test results of drilled shaft by Pile Driving Analyzer performed at same sites are also presented to compare the load transfer characteristics interpreted from static pile load tests.

  • PDF

Study of Effect of tunnelling on pile group - Numerical Analysis (터널 굴착이 무리말뚝거동에 미치는 영향에 대한 수치해석연구)

  • Woo, Seung-Je;Choi, Go-Ny;Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.96-103
    • /
    • 2010
  • This paper presents of effect of tunneling on pile group of being operated bridge using Three-dimensional numerical modeling to study the effect of coordination of tunneling location under discontinuous group pile. In order to find idealistic tunneling location that causes settlement, change of stress on the piles and movement of soil at a minimum, a fully coupled 3D finite element model is adopted. The study contains pile settlement, axial force on each piles in the group, axial displacement of piles and soil behaviour caused by tunneling. Based on the result some insights into the pile behavior due to tunneling obtained from numerical analysis were mentioned and discussed.

  • PDF

Design of Morphological Filter for Image Processing (영상처리용 Morphological Filter의 하드웨어 설계)

  • 문성용;김종교
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.10
    • /
    • pp.1109-1116
    • /
    • 1992
  • Mathematical morphology, theoretical foundation for morphological filter, is very efficient for the analysis of the geometrical characteristics of signals and systems and is used as a predominant tool for smoothing the data with noise. In this study, H/W design of morphological filter is implemented to process the gray scale dilation and the erosion in the same circuit and to choose the maximum and minimum value by a selector, resulting in their education of the complexity of the circuit and an architecture for parallel processing. The structure of morphological filter consists of the structuring-element block, the image data block, the control block, the ADD block, the MIN/MAX block, etc, and is designed on an one-chip for real time operation.

  • PDF

Design Analysis on Stool Seats: Aesthetics and Forms (스툴의 좌판에 따른 조형 분석)

  • 조숙경
    • Journal of the Korea Furniture Society
    • /
    • v.13 no.2
    • /
    • pp.75-84
    • /
    • 2002
  • The chairs are one of the most important furniture in this modern society, as we know that history of furniture is made of history of the chairs. Among the chairs, the stool, which made by only sit and legs, forms the basis of the chairs. The stool plays an important part in the human body to support and also help to make an agile movement In a short period of time. The stool is the minimum unit of chair, which made of least size and simple structure; therefore it fits to study basic knowledge of furniture making. For that reason, we can see occasionally the schools of furniture design departments have chosen the stool making course in their foundation students' studio classes. However, the professional study on the stool, such as the study on the posture for designing stool, has not been developed yet. This study presents basic Information of design for stool by analyzing various stools formatively.

  • PDF

Validating the Structural Behavior and Response of Burj Khalifa: Synopsis of the Full Scale Structural Health Monitoring Programs

  • Abdelrazaq, Ahmad
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 2012
  • New generation of tall and complex buildings systems are now introduced that are reflective of the latest development in materials, design, sustainability, construction, and IT technologies. While the complexity in design is being overcome by the availability and advances in structural analysis tools and readily advanced software, the design of these buildings are still reliant on minimum code requirements that yet to be validated in full scale. The involvement of the author in the design and construction planning of Burj Khalifa since its inception until its completion prompted the author to conceptually develop an extensive survey and real-time structural health monitoring program to validate all the fundamental assumptions mad for the design and construction planning of the tower. The Burj Khalifa Project is the tallest structure ever built by man; the tower is 828 meters tall and comprises of 162 floors above grade and 3 basement levels. Early integration of aerodynamic shaping and wind engineering played a major role in the architectural massing and design of this multi-use tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria established at the onset of the project design. Understanding the structural and foundation system behaviors of the tower are the key fundamental drivers for the development and execution of a state-of-the-art survey and structural health monitoring (SHM) programs. Therefore, the focus of this paper is to discuss the execution of the survey and real-time structural health monitoring programs to confirm the structural behavioral response of the tower during construction stage and during its service life; the monitoring programs included 1) monitoring the tower's foundation system, 2) monitoring the foundation settlement, 3) measuring the strains of the tower vertical elements, 4) measuring the wall and column vertical shortening due to elastic, shrinkage and creep effects, 5) measuring the lateral displacement of the tower under its own gravity loads (including asymmetrical effects) resulting from immediate elastic and long term creep effects, 6) measuring the building lateral movements and dynamic characteristic in real time during construction, 7) measuring the building displacements, accelerations, dynamic characteristics, and structural behavior in real time under building permanent conditions, 8) and monitoring the Pinnacle dynamic behavior and fatigue characteristics. This extensive SHM program has resulted in extensive insight into the structural response of the tower, allowed control the construction process, allowed for the evaluation of the structural response in effective and immediate manner and it allowed for immediate correlation between the measured and the predicted behavior. The survey and SHM programs developed for Burj Khalifa will with no doubt pioneer the use of new survey techniques and the execution of new SHM program concepts as part of the fundamental design of building structures. Moreover, this survey and SHM programs will be benchmarked as a model for the development of future generation of SHM programs for all critical and essential facilities, however, but with much improved devices and technologies, which are now being considered by the author for another tall and complex building development, that is presently under construction.

Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate

  • Jia, Anqiang;Liu, Haiyan;Ren, Lijian;Yun, Yingxia;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.111-127
    • /
    • 2020
  • The goal of this study is to fill this apparent gap in the area about investigating the effect of porosity distributions on vibrational behavior of FG sectorial plates resting on a two-parameter elastic foundation. The response of the elastic medium is formulated by the Winkler/Pasternak model. The internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The model is proposed with material parameters varying in the thickness of plate to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. The 2-D differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite plates, it is crucial to consider porosities inside the material structure.

Numerical analysis for structure-pile-fluid-soil interaction model of fixed offshore platform

  • Raheem, Shehata E. Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Mansour, Mahmoud H.;Omar, Mohamed
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.243-266
    • /
    • 2020
  • In-place analysis for offshore platforms is required to make proper design for new structures and true assessment for existing structures. In addition, ensure the structural integrity of platforms components under the maximum and minimum operating loads and environmental conditions. In-place analysis was carried out to verify the robustness and capability of structural members with all appurtenances to support the applied loads in either operating condition or storm conditions. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have an important effect on the results of the in-place analysis behavior. The influence of the soil-structure interaction on the response of the jacket foundation predicts is necessary to estimate the loads of the offshore platform well and real simulation of offshore foundation for the in-place analysis. The result of the study shows that the in-place response investigation is quite crucial for safe design and operation of offshore platform against the variation of environmental loads.