• Title/Summary/Keyword: minimum flow problem

Search Result 98, Processing Time 0.034 seconds

Implementation of Digital Filters on Pipelined Processor with Multiple Accumulators and Internal Datapaths

  • Hong, Chun-Pyo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.44-50
    • /
    • 1999
  • This paper presents a set of techniques to automatically find rate optimal or near rate optimal implementation of shift-invariant flow graphs on pipelined processor, in which pipeline processor has multiple accumulators and internal datapaths. In such case, the problem to be addressed is the scheduling of multiple instruction streams which control all of the pipeline stages. The goal of an automatic scheduler in this context is to rearrange the order of instructions such that they are executed with minimum iteration period between successive iteration of defining flow graphs. The scheduling algorithm described in this paper also focuses on the problem of removing the hazards due to inter-instruction dependencies.

  • PDF

A Basic Study on Composite Power System Expansion Planning Considering Probabilistic Reliability Criteria

  • Choi, Jae-Seok;Tinh, TranTrung;Kim, Hyung-Chul;El-Keib, A.;Thomas, R.;Billinton, R.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.297-300
    • /
    • 2004
  • This paper proposes a method for choosing the best composite power system expansion plan considering probabilistic reliability criterion. The proposed method was modeled as the minimization of the investment budget (economics) for constructing new transmission lines subject to not only deterministic(demand constraint) but also probabilistic reliability criterion(LOLE) with considering the uncertainties of the system elements. This is achieved by modeling the power system expansion problem as an integer programming one. The method solves for the optimal strategy using a probabilistic theory based branch and bound method that utilizes a network flow approach and the maximum flow-minimum cut set theorem. Although the proposed method is applied to a simple sample study, the test results demonstrate a fact that the proposed method is suitable for solving the power system expansion planning problem subject to practical uncertainties for future.

  • PDF

Flow Characteristics of Refrigerant-oil Mixtures in a Dehumidifying Cycle (제습 사이클에서의 냉매-오일 혼합물의 유동특성)

  • 박세민;하삼철;신종민;이장호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • This paper deals with refrigerant-oil mixtures in a dehumidifying cycle. Two different oils such as Alkylbenzene(AB) and Polyol-esters(POE) lubricants are used for R134a to investigate the effect of miscibility on oil returnability. It was found that R134a/AB mixture had more unstable interface between oil and refrigerant than R134a/POE mixture. However, overall flow patterns of both refrigerant-oil mixtures were almost same. The minimum height of oil measured in the compressor was as high as twice of the least permissible height of oil in the compressor required to insure its reliability. Thus, it is considered that immiscible oil, i. e., AB for R134a can be used without causing oil returnability problem.

  • PDF

An Efficient Distributed Parallel Processing Method in Security Constrained Optimal Power Flow (상정사고를 고려하는 최적 조류 계산의 분산 병렬 처리 기법에 관한 연구)

  • Kim, Jin-Ho;Hur, Don;Park, Jong-Keun;Kim, Bal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.997-999
    • /
    • 1998
  • An operationally secure power system is one low probability of blackout or equipment damage. The power system is needed to maintain a designated security level at minimum operating cost. The inclusions of security make power system problem complex. But, because security and optimality are normally conflicting requirement, the separate treatments of both are inappropriate. So, a unified hierarchical formulation is needed. In this paper, the overview of security constrained optimal power flow (SCOPF) is presented and an introduction of parallel distributed formulation to SCOPF is also presented.

  • PDF

Structural Analysis of RIROB(Reactor Inspection Robot) (원자로용 수중탐상기의 구조해석)

  • 최석호;권영주;김재희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.613-616
    • /
    • 1997
  • MDO(Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided engineering(CAE) system. And this paper treats the structural design problem of RIROB(Reactor Inspection Robot) through the application of MDO methodology. In a MDO methodology application to the structural design of RIBOS, kinetodynamic analysis is done using a simple fluiddynamic analysis model for the warter flow over the sensor support surface instead of difficult fluid dynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. The minimum thickness (0.8cm) of the RIROB housing is obtained for the safe design of RIROB. The kinetodynamic analysis of RIROB. The kinetodynamic analysis of RIROB is done using ADAMS and the static structural analysis of RIROB is done using NISA.

  • PDF

An empirical study on the material distribution decision making

  • Ko, Je-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.355-361
    • /
    • 2010
  • This paper addresses a mathematical approach to decision making in a real-world material distribution situation. The problem is characterized by a low-volume and highly-varied mix of products, therefore there is a lot of material movement between the facilities. This study focuses especially on the transportation scheduler with a tool that can be used to quantitatively analyze the volume of material moved, the type of truck to be used, production schedules, and due dates. In this research, we have developed a mixed integer programming problem using the minimum cost, multiperiod, multi-commodity network flow approach that minimizes the overall material movement costs. The results suggest that the optimization approach provides a set of feasible solution routes with the objective of reducing the overall fleet cost.

Particle Motion Interpolation Method for Mitigating the Occurrence of Unnatural Wave Breaking in Fluid Simulation (유체 시뮬레이션에서 부자연스러운 쇄파의 발생을 완화하기 위한 파티클 움직임 보간 방법)

  • Sung, Su-Kyung;Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.14 no.3
    • /
    • pp.55-62
    • /
    • 2014
  • In particle-based fluid simulation, applying sudden power to particle raise unnatural flow when wave is breaking. To solve this problem, we have used an linear interpolation technique that interpolate between fluid particle by subdividing the time interval in the previous work. Acceleration vector of the particle with increased pressure in boundary could change smoothly. However, particle looks like flow with viscosity because the number of the minimum samples to interpolate increases. We propose an weighted-interpolation technique to represent the realistic movement of fluid. it is accumulating that has added and assigned different weights to the previous acceleration vector and current one repeatedly. weighted-interpolation technique using less minium samples to flow than linear interpolation, so it can solve the problem which particle looks like flow with viscosity.

Optimization Models and Algorithm for the Capacitated Facility Location-Allocation Problem (용량제약이 있는 설비의 위치선정 및 수요자 할당문제에 대한 최적화 모형 및 해법)

  • Kang Sung-Yeol;Sohn Jin-Hyeon
    • Journal of Digital Contents Society
    • /
    • v.3 no.2
    • /
    • pp.221-233
    • /
    • 2002
  • In this paper, we present integer programming models and algorithms for the Capacitated Facility Location-Allocation Problem (CFLP). The models and algorithms can be used for the design of logistics networks and for the location of telecommunication facilities. We are given a set of candidate facility installation sites, one type of facility for each candidate site with its capacity and installation cost, a set of customers with their demand requirement, and flow cost for one unit of demand flow from each customer to each candidate site. (CFLP) is to determine the number of facilities for each candidate site and the set of customers which are connected to each site with minimum cost, while satisfying the demand requirement of each customer and constraints imposed on the allocation of customers to facilities. We present two integer programming models for (CFLP), and devise a branch-and-cut algorithm and a branch-and-price algorithm for the problem.

  • PDF

Gradient Optimized Gradient-Echo Gradient Moment Nulling Sequences for Flow Compensation of Brain Images

  • Jahng, Geon-Ho;Stephen Pickup
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.20-26
    • /
    • 2000
  • Gradient moment nulling techniques require the introduction of an additional gradient on each axis for each order of motion correction to be applied. The additional gradients introduce new constraints on the sequence design and increase the demands on the gradient system. The purpose of this paper is to demonstrate techniques for optimization of gradient echo gradient moment nulling sequences within the constraints of the gradient hardware. Flow compensated pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. The design of the gradient moment nulling sequences requires the solution of a linear system of equations. A Mathematica package was developed that interactively solves the gradient moment nulling problem. The package allows the physicist to specify the desired order of motion compensation and the duration of the gradients in the sequence with different gradient envelopes. The gradient echo sequences with first, second, and third order motion compensation were implemented with minimum echo time. The sequences were optimized to take full advantage of the capabilities of the gradient hardware. The sequences were used to generate images of phantoms and human brains. The optimized sequences were found to have better motion compensation than comparable standard sequences.

  • PDF

A Hierarchical Hybrid Meta-Heuristic Approach to Coping with Large Practical Multi-Depot VRP

  • Shimizu, Yoshiaki;Sakaguchi, Tatsuhiko
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Under amazing increase in markets and certain demand on qualified service in the delivery system, global logistic optimization is becoming a keen interest to provide an essential infrastructure coping with modern competitive prospects. As a key technology for such deployment, we have been engaged in the practical studies on vehicle routing problem (VRP) in terms of Weber model, and developed a hybrid approach of meta-heuristic methods and the graph algorithm of minimum cost flow problem. This paper extends such idea to multi-depot VRP so that we can give a more general framework available for various real world applications including those in green or low carbon logistics. We show the developed procedure can handle various types of problem, i.e., delivery, direct pickup, and drop by pickup problems in a common framework. Numerical experiments have been carried out to validate the effectiveness of the proposed method. Moreover, to enhance usability of the method, Google Maps API is applied to retrieve real distance data and visualize the numerical result on the map.