• Title/Summary/Keyword: minimum cost trees

Search Result 14, Processing Time 0.018 seconds

On Minimum Cost Multicast Routing Based on Cost Prediction

  • Kim, Moon-Seong;Mutka, Matt W.;Hwang, Dae-Jun;Choo, Hyun-Seung
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.500-508
    • /
    • 2009
  • We have designed an algorithm for a problem in multicast communication. The problem is to construct a multicast tree while minimizing its cost, which is known to be NP-complete. Our algorithm, which employs new concepts defined as potential cost and spanning cost, generates a multicast tree more efficiently than the well-known heuristic called Takahashi and Matsuyama (TM) [1] in terms of tree cost. The time complexity of our algorithm is O($kn^2$) for an n-node network with k members in the multicast group and is comparable to the TM. Our empirical performance evaluation comparing the proposed algorithm with TM shows that the enhancement is up to 1.25%~4.23% for each best case.

Point-to-Multipoint Minimum Cost Flow Problem with Convex Cost Function (콘벡스 비용함수를 갖는 점-대-다중점 최소비용 흐름문제)

  • 박구현;신용식
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.4
    • /
    • pp.15-25
    • /
    • 2000
  • In this paper, we introduce a point-to-multipoint minimum cost flow problem with convex and demand splitting. A source node transmits the traffic along the tree that includes members of the point-to-multipoint connection. The traffic is replicated by the nodes only at branch points of the tree. In order to minimize the sum of arc costs, we assume that the traffic demand can be splitted and transmitted to destination nodes along different trees. If arc cost is linear, the problem would be a Steiner tree problem in networks eve though demand splitting is permitted. The problem would be applied in transmitting large volume of traffic from a serve to clients in Internet environments. Optimality conditions of the problem are presented in terms of fair tree routing. The proposed algorithm is a finite terminating algorithm for $\varepsilon$-optimal solution. convergence of the algorithm is obtained under monotonic condition and strict convexity of the cost function. Computational experiences are included.

  • PDF

Parallel and Sequential Implementation to Minimize the Time for Data Transmission Using Steiner Trees

  • Anand, V.;Sairam, N.
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.104-113
    • /
    • 2017
  • In this paper, we present an approach to transmit data from the source to the destination through a minimal path (least-cost path) in a computer network of n nodes. The motivation behind our approach is to address the problem of finding a minimal path between the source and destination. From the work we have studied, we found that a Steiner tree with bounded Steiner vertices offers a good solution. A novel algorithm to construct a Steiner tree with vertices and bounded Steiner vertices is proposed in this paper. The algorithm finds a path from each source to each destination at a minimum cost and minimum number of Steiner vertices. We propose both the sequential and parallel versions. We also conducted a comparative study of sequential and parallel versions based on time complexity, which proved that parallel implementation is more efficient than sequential.

Cost-Benefit Analysis for Planting Type of Street Trees (가로수 조성 유형에 따른 비용편익 비교 분석)

  • Kim, Joon Soon;Lee, Dong Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.6
    • /
    • pp.29-37
    • /
    • 2014
  • The objective of this study is to estimate the cost and benefits of street trees for their planting types, specifically, single row, single row+bottom, double row, double row+bottom. Different planting types are compared and analyzed by using Net Present Value (NPV) and benefit-cost ratio (BCR). Existing data are collected from the literature reviews for the use of meta-analysis method for estimating cost and benefit. The elements for analyzing costs are management and planting costs, and benefits are air purification, energy saving and landscape view. The discount rate is applied at a minimum of 3% and a maximum of 5.5%. The unit used in this calculation is km/year. The result shows that the net benefit is highest in double row, followed by single row, double row+bottom, and single row+bottom. The BCR is the highest in double row, followed by single row, double row+bottom, and single row+bottom. The BCR reaches the break-even point from 9 to 17 years depending on the planting types.

A Polynomial-time Algorithm to Find Optimal Path Decompositions of Trees (트리의 최적 경로 분할을 위한 다항시간 알고리즘)

  • An, Hyung-Chan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.5_6
    • /
    • pp.195-201
    • /
    • 2007
  • A minimum terminal path decomposition of a tree is defined as a partition of the tree into edge-disjoint terminal-to-terminal paths that minimizes the weight of the longest path. In this paper, we present an $O({\mid}V{\mid}^2$time algorithm to find a minimum terminal path decomposition of trees. The algorithm reduces the given optimization problem to the binary search using the corresponding decision problem, the problem to decide whether the cost of a minimum terminal path decomposition is at most l. This decision problem is solved by dynamic programing in a single traversal of the tree.

Multicast Tree Generation using Meta Reinforcement Learning in SDN-based Smart Network Platforms

  • Chae, Jihun;Kim, Namgi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3138-3150
    • /
    • 2021
  • Multimedia services on the Internet are continuously increasing. Accordingly, the demand for a technology for efficiently delivering multimedia traffic is also constantly increasing. The multicast technique, that delivers the same content to several destinations, is constantly being developed. This technique delivers a content from a source to all destinations through the multicast tree. The multicast tree with low cost increases the utilization of network resources. However, the finding of the optimal multicast tree that has the minimum link costs is very difficult and its calculation complexity is the same as the complexity of the Steiner tree calculation which is NP-complete. Therefore, we need an effective way to obtain a multicast tree with low cost and less calculation time on SDN-based smart network platforms. In this paper, we propose a new multicast tree generation algorithm which produces a multicast tree using an agent trained by model-based meta reinforcement learning. Experiments verified that the proposed algorithm generated multicast trees in less time compared with existing approximation algorithms. It produced multicast trees with low cost in a dynamic network environment compared with the previous DQN-based algorithm.

Two Phase Heuristic Algorithm for Mean Delay constrained Capacitated Minimum Spanning Tree Problem (평균 지연 시간과 트래픽 용량이 제한되는 스패닝 트리 문제의 2단계 휴리스틱 알고리즘)

  • Lee, Yong-Jin
    • The KIPS Transactions:PartC
    • /
    • v.10C no.3
    • /
    • pp.367-376
    • /
    • 2003
  • This study deals with the DCMST (Delay constrained Capacitated Minimum Spanning Tree) problem applied in the topological design of local networks or finding several communication paths from root node. While the traditional CMST problem has only the traffic capacity constraint served by a port of root node, the DCMST problem has the additional mean delay constraint of network. The DCMST problem consists of finding a set of spanning trees to link end-nodes to the root node satisfying the traffic requirements at end-nodes and the required mean delay of network. The objective function of problem is to minimize the total link cost. This paper presents two-phased heuristic algorithm, which consists of node exchange, and node shift algorithm based on the trade-off criterions, and mean delay algorithm. Actual computational experience and performance analysis show that the proposed algorithm can produce better solution than the existing algorithm for the CMST problem to consider the mean delay constraint in terms of cost.

Genetic Programming with Weighted Linear Associative Memories and its Application to Engineering Problems (가중 선형 연상기억을 채용한 유전적 프로그래밍과 그 공학적 응용)

  • 연윤석
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.57-67
    • /
    • 1998
  • Genetic programming (GP) is an extension of a genetic algoriths paradigm, deals with tree structures representing computer programs as individuals. In recent, there have been many research activities on applications of GP to various engineering problems including system identification, data mining, function approximation, and so forth. However, standard GP suffers from the lack of the estimation techniques for numerical parameters of the GP tree that is an essential element in treating various engineering applications involving real-valued function approximations. Unlike the other research activities, where nonlinear optimization methods are employed, I adopt the use of a weighted linear associative memory for estimation of these parameters under GP algorithm. This approach can significantly reduce computational cost while the reasonable accurate value for parameters can be obtained. Due to the fact that the GP algorithm is likely to fall into a local minimum, the GP algorithm often fails to generate the tree with the desired accuracy. This motivates to devise a group of additive genetic programming trees (GAGPT) which consists of a primary tree and a set of auxiliary trees. The output of the GAGPT is the summation of outputs of the primary tree and all auxiliary trees. The addition of auxiliary trees makes it possible to improve both the teaming and generalization capability of the GAGPT, since the auxiliary tree evolves toward refining the quality of the GAGPT by optimizing its fitness function. The effectiveness of this approach is verified by applying the GAGPT to the estimation of the principal dimensions of bulk cargo ships and engine torque of the passenger car.

  • PDF

Rule-based System for Loading Multiple Items in Containers for Shipping (제품수송 컨터네이너의 적재를 위한 규칙기반시스템)

  • Park, Ji Hee;Lee, Gun Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.6
    • /
    • pp.403-412
    • /
    • 2013
  • This study figures out the concepts of container transport, logistical cost and the distribution of a company through studying documents, and to suggest logistical cost reduction approach, focused on the efficiency of transport which occupied the considerable portion of the total logistical cost of the company. We analyze and discuss the container loading of multiple items for multiple places of departure and arrival through a case study on S company in South Korea. We suggest a direction to reduce the logistical cost of the companies, analyzing the conditions of multiple items loading, and rule-based systems including an algorithm which determines container-loading for minimum freight expenses. We use data mining and OLAP tools of MS Analysis Services to produce loading rules for multiple items loading and generate OLAP cube and decision trees to validate the rules.

Efficient Allocation and Connection of Concentrators and Repeaters Using Approximate Steiner Minimum Tree in Automatic Meter Reading System (원격 검침 시스템에서 근사 최소 스타이너 트리를 이용한 집중기 및 중계기의 효율적인 배치와 연결)

  • Kim, Chae-Kak;Kim, In-Bum;Kim, Soo-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.994-1003
    • /
    • 2009
  • For Automatic Meter Reading System, good topology of check machines, concentrators, and repeaters in client field is important. Steiner Minimum Tree is a minimum cost tree connecting all given nodes with introducing Steiner points. In this paper, an efficient mechanism allocating and connecting check machines, concentrators and repeaters which are essential elements in automatic meter reading system is proposed, which conducts repeated applications of building approximate Minimum Steiner Trees. In the mechanism, input nodes and Steiner points might correspond to check machine, concentrators or repeaters and edges might do to the connections between them. Therefore, through suitable conversions and processes of them, an efficient network for automatic meter reading system with both wired and wireless communication techniques could be constructed. In our experiment, for 1000 input nodes and 200 max connections per node, the proposed mechanism shortened the length of produced network by 19.1% comparing with the length of Minimum Spanning Tree built by Prim's algorithm.