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Abstract 
In this paper, we present an approach to transmit data from the source to the destination through a minimal 
path (least-cost path) in a computer network of n nodes. The motivation behind our approach is to address 
the problem of finding a minimal path between the source and destination. From the work we have studied, 
we found that a Steiner tree with bounded Steiner vertices offers a good solution. A novel algorithm to 
construct a Steiner tree with vertices and bounded Steiner vertices is proposed in this paper. The algorithm 
finds a path from each source to each destination at a minimum cost and minimum number of Steiner 
vertices. We propose both the sequential and parallel versions. We also conducted a comparative study of 
sequential and parallel versions based on time complexity, which proved that parallel implementation is more 
efficient than sequential. 
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1. Introduction 

The Steiner tree problem attracts considerable interest because of its applications in various areas. A 
Steiner tree problem ascertains a Steiner minimum tree, that is, a Steiner tree of the least length. A 
Steiner tree may be comprised of Steiner points. The length of a Steiner tree is measured by adding the 
length of all the edges. The Steiner tree problem aims at constructing a network N, which interconnects 
a set of t terminals with the following characteristics:  

1.   T may contain nodes other than the given terminals. 
2.   T minimizes a given cost function. 
3.   The given cost function guarantees that T can be assumed to be a minimum spanning tree on its 

nodes (for a given metric). 
 
The first characteristic gives rise to a problem in topology, which is that there is an exponential 

increase in the number of different topologies to be taken. A control has to be enforced on the number 
of extra nodes. That is, the first characteristic should be replaced as explained below. 

T may contain up to k nodes, other than the given terminals, where k is a given positive integer.  The 
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Steiner tree problem has applications in network routing and wireless communication networks. 
We attempted to construct a minimal-Steiner tree. Our approach constructs a minimal-Steiner tree, 

which includes non-terminal nodes in the shortest path, only if necessary. Our approach does not 
assign equal weight for all edges. Each edge is randomly assigned a weight based on exponential 
distribution. These features make our approach capable of overcoming the problem of irregular 
topologies. We tested our approach both sequentially and in parallel. 

This paper is laid out as follows: Section 2 presents the related work, Section 3 discusses the proposed 
approach, Section 4 presents the algorithm for the sequential version and its analysis, Section 5 presents 
the algorithm for the parallel version and its analysis, Section 6 presents the results, and the conclusion 
is given in Section 7. 

 
 

2. Related Work 

Two approximation algorithms have been proposed for Steiner connected dominating sets [1]. One 
algorithm is used for finding a small dominating set and choosing a terminal as the representative for 
each vertex in that set, and the other algorithm is for selecting a core vertex and connecting the 
terminals that have been left out. 

The approach proposed in [2], presents an O(n2) time approximation algorithm for the minimum 
rectilinear Steiner tree. They showed that the algorithm has a high approximation ratio. 

The work proposed in [3] is a technique of linking a collection of terminals by a Steiner tree in a 
randomized setup. The work proposed a 2-stage stochastic optimization with recourse model for the 
Steiner tree problem. The model is for an undirected graph G=(V,E), in which V represents vertices and 
E represents edges, Ce  refers to the cost of the edge and a collection of terminals, where g = {t1, t2, . . . , 
tk}, and it finds a subset E’, which consists of the least cost edges that links all of the terminals. 

The author in [4], proposed a new approach, where he offered algorithms for approximating the 
directed Steiner tree problem, set cover problem, and generalized Steiner tree problem. He proposed the 
new primal-dual algorithm, which maintains the double key in the inner of the double feasible region, 
unlike traditional primal-twofold algorithms. This new approach avoids many arcs in the result, thereby 
achieving a lesser-cost result. This approach is the inner-point version of the primal-twofold, which 
performs better than the actual primal-dual method. 

The approach proposed in [5] contributes polynomial time approximation schemes for the ϵ-dense 
Steiner tree problems. Upon comparison with the total number of terminals, if the number of terminal 

sets is small, their approach proved that the ratio 1+O((∑i log|S i |)/(∑i |Si |)), where, Si  is the terminal 
sets and it becomes less. 

The study done in [6], proved that a graph G that is thought to be symmetric has a weight or cost 
function, where, weight(i, j) = weight(j, i) for all edges (i, j), which belongs to E, where “weight” is the 
edge weight function. In these cases, the solution of a directed least cost Steiner tree problem and a least 
cost Steiner tree for an equal undirected weighted graph are alike. 

An approximation algorithm based on linear programming uses a randomized rounding technique 
[7], which is done iteratively. The algorithm is implemented as a directed-component cut reduction for 
a Steiner tree limited to k. The value of the related variable in the optimum fractional solution is taken.  
Then, the sampling is done for one of the components with the probability relative to that value and 
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contract it. The process is repeated, which yields the sampled components with a least-cost terminal 
spanning tree in the graph. Since the integrality gap is a maximum of 1.55, this algorithm answers the 
question of: “Is there any LP-relaxation for a Steiner tree with an integrality gap less than 2?”. 

A generalised method to solve the k-Steiner tree problem [8] deals with Steiner minimum trees, 
which may contain up to k-Steiner points for a given constant k. This approach generalizes the              
1-Steiner tree problem proposed in [9], which gives an optimal solution within O(n2) time. But, the 
approach proposed in [8] offers the solution in O(n2k) time. 

The authors of [10] have shown that the problem of reducing the length of the lengthy edge in a 
Steiner tree with atmost k-Steiner vertices is NP-hard and cannot be approximated within a factor  2-ε, 
for any  ε > 0, unless P = NP. This proposed algorithm performs one of the following operations for the 

given edge ei ∈ E: (a) It either constructs a k-ST in G with bottleneck at most 2d(ei), or (b) it returns the 
information that Gi does not contain a k-ST. 

A hybrid algorithm was proposed in [11]. The algorithm focused on solving the Steiner tree problem 
and was built on the modified intelligent water drops algorithm and learning automata. The intelligent 
water drops algorithm is efficient because of its global search and quick convergence abilities. To 
improve its performance, learning automata was used to select the parameters of the intelligent water 
drops algorithm. This hybrid algorithm performs better than conventional heuristic algorithms and 
other algorithms with quick convergence. For time-constrained problems, the proposed Extended 
Intelligent Water Drops (EIWD) algorithm offers the benefit of quick convergence. 

The algorithm presented in [12] is for computing a min-cost tree S, which spans all terminals. The 
aim was to minimize the total power consumption of nodes. The power of a node v was computed as 
edges of the S incident to v are taken, calculate the cost of these edges and find the maximum of it. The 
min-power version of the problem is suitable for wireless applications. 

The approach proposed in [13] concentrates on arbitrary cases of the Steiner tree problem. Taking 
the performance analysis of the algorithms on typical instances, the focus was to harmonize the typical 
worst case study of algorithms with them. For a given random graph, the work done in [14] constructed 
minimum Steiner trees with the weights of all of the edges being the same, which were equal to 1. In a 
complete graph Kn, with n vertices, this approach sought to find the least weight of a Steiner tree. The 
weights of the edges were selected independently from a distribution X. 

 
 

3. Proposed Approach 

This paper aims at constructing a minimal-Steiner tree. There are many algorithms available for 
constructing a minimal-Steiner tree. However, our approach does it with the improvement of randomly 
assigning weights and with a control over the number of extra nodes (non-terminals). Our approach 
also constructs a weighted Steiner tree, with the edges having random weights. 

As stated by the author of [15], a weighted Steiner tree can be defined as an undirected network 
G=(n,e,δ,C), where δ is a mapping from the collection of vertices to the collection of reals called 
“weights,” and let T be a non-empty set, T ⊆ n called terminals. The weighted Steiner tree problem is 
defined as: 

Find SG(T)→ a subnetwork of G such that ∀ pair of terminals ∃ a path 
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where, W is the weight of edges and C is the cost of nodes. A Steiner tree is a collection of terminals and 
non-terminals (Steiner points), which is shown in Fig. 1. 

Fig. 1 shows a collection of terminals (vi) and non-terminals (uj), For terminals (vi), “i” varies from        
1 to 7 and for non-terminals (uj) “j” varies from 1 to 3. 

However, the issue is that the maximum number of non-terminals leads to different topologies. Our 
approach focuses on the shortest path with the least cost. If the shortest path needs some non-terminals 
in the paths to destinations, then only the non-terminals will be included in the paths towards 
destinations. This solves the problem of different (irregular) topologies. 

 

 
Fig. 1. A Steiner tree with 7 terminals and 3 non-terminals (Steiner points). 

 
This approach obtains the number of terminals and non-terminals as input and the cost matrix is 

formed. Each edge is randomly assigned a weight based on exponential distribution. Using the matrix, 
our algorithm finds the shortest path between vertices. A minimal tree is constructed with all terminal 
nodes. Finally, our internodes procedure finds the intermediate non-terminal nodes in the path 
between the source and destinations and, thus, a minimal-Steiner tree is constructed. 

Our approach is implemented in two ways—sequentially and in parallel. Sequential implementation 
is done with C language and for parallel implementation, openMP in RedHat Linux Ubuntu release is 
used. 

 
 

4. Algorithms for a Sequential Version 

4.1 Finding the Minimal Steiner Tree 
 

In a minimal Steiner tree problem, the vertices are separated into terminal and non-terminals. The 
solution or the output must have the terminals. The weights of all edges are added to calculate the 
weight or cost of a Steiner tree. To find the least-cost Steiner tree, the tree might encompass some 
Steiner points (non-terminals). Our approach produces the results at a minimum cost by including the 
non-terminals only on demand. The following procedure generates a cost matrix with a set of nodes by 



Parallel and Sequential Implementation to Minimize the Time for Data Transmission Using Steiner Trees 

 

108 | J Inf Process Syst, Vol.13, No.1, pp.104~113, February 2017 

calling routines to find the shortest path and finds the minimal tree to connect terminal nodes. The 
algorithms are presented below. 

 
To find a minimal-Steiner tree 
 
Step 1: Give the input for the number of terminal and non-terminal nodes.  
Step 2: The cost matrix is formed by randomly assigning weights based on exponential distribution.         
Step 3: Call the shortest path to find the minimal path between vertices. 
Step 4: Call the minimal tree to find the minimal tree that connects the terminal nodes. 
Step 5: FOR i = 1 TO 2*T steps of 2 

call the internodes to find the intermediate nodes  
between sttree[i] and sttree[i+1] 

            END FOR 
 

4.2 Finding the Shortest Path                                                                 
 

The algorithm presented here finds the shortest path from a chosen source to a given destination. It 
partitions vertices into two distinct groups, a group of not-placed vertices and a group of placed 
vertices. To begin with, all vertices are not-placed, and the algorithm ends once all vertices are in the 
placed set. A vertex is moved from the not-placed set to the placed set, once its shortest distance from 
the source has been found. This algorithm is so powerful that it finds all of the shortest paths from the 
source to all of the destinations. 

 
To find the shortest path 
 
Step 1: FOR k= 1 TO n 
Step 2:    FOR i = 1 TO n 
Step 3:       FOR j = 1 TO n 
Step 4:            IF (arr[i][j] > arr[i][k] + arr[k][j]) 
                              arr[i][j] = arr[i][k] + arr[k][j];  
                    path[i][j]=k; 
                       END IF 
                  END FOR 
               END FOR 
            END FOR 

 
4.3 Finding the Minimal Spanning Tree 
 

Given a graph G, the algorithm produces a minimum spanning tree of G. Our approach finds the 
minimal spanning tree in this way: a tree is an acyclic graph. The algorithm starts with an empty graph 
and adds edges one at a time, so that it is acyclic. The resulting graph is always a subset of some 
minimum spanning tree. 

 
To find the minimal spanning tree 
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   Step 1: v[0]=TRUE;                                                                                   
   Step 2: FOR i = 2 TO n                                               
                         v[i]=FALSE;                                                                         
               END FOR                                                                                                                                              
   Step 3: sttree[1]=1, s=0,k=2;                                                                                                                       
   Step 4: WHILE (k<n) 
                min=999;  
                FOR i = 1 TO n 
                   FOR j = 2 TO n                        
                       IF(v[i]==TRUE&&v[j]==FALSE&&c[i][j]<min) 
                                 min=c[i][j]; 
                                 v1=I; 
                                 v2=j; 
                       END IF  
                  END FOR 
                END FOR 
                mincost=mincost+min; 
                v[v2]=TRUE;       
                k++,sttree[s++]=v1,sttree[s++]=v2;  
            END WHILE 
 

4.4 Finding the Intermediate Nodes 
 

In the algorithm to find the minimal-Steiner tree, internodes is called in Step 5. This procedure is 
called to find the intermediate nodes between the source and destination, if there are any. 

 
To find the intermediate nodes 
 
internodes(path[][MAX],arr[][MAX],r1,c1) 
Step 1: i=r1,j=c1, node[nno++]=r1 
Step 2: Print (r1); 
Step 3: WHILE(path[i][j]!=-1) 
         PRINT (path[i][j]) 
       i=path[i][j];  
            END WHILE 
Step 4: PRINT(c1) 
 

4.5 Analysis of the Computation-Sequential Version 
 

The procedure to find the minimal spanning tree has a time complexity of O(T^2), where T is the 
number of terminals. This is extremely fast compared to the exact rectilinear Steiner minimal tree 
(RSMT) algorithm. The time complexity of the algorithm to get the least-cost path is O(E log n), where 
E refers to edges and n refers to vertices. The number of edges is determined from the value of T, and 
for each edge internodes is called. The time complexity of internodes is computed based on the count of 
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Steiner points (non-terminal nodes) between the terminals, and the time complexity is O(T*n), where T 
refers to the terminals and  n refers to all the nodes. 

 
 

5. Algorithm for the Parallel Version 

The parallel version of our program was designed and executed using OpenMP. The procedure for 
finding the intermediate nodes was parallelized. Each path from the source to the destination runs on a 
separate thread and each thread consumes a different time for execution. 

 
5.1 To Find the Minimal-Steiner Tree  
 

Step 1: Give the input for the number of terminal nodes and non-terminal nodes. 
Step 2: The cost matrix is formed by randomly assigning weights based on exponential distribution. 
Step 3: Call the shortest path to find the minimal path between vertices. 
Step 4: Call the minimal tree to find the minimal tree connecting terminal nodes. 
Step 5: Parallel section begins 
            Parallel FOR i = 1 TO 2*T steps of 2 
                                     call the internode to find the intermediate        
                                     nodes between sttree[i] and sttree[i+1] 
            END the parallel FOR                                                                                                                                                         
        Parallel section ends 
 
To prove that the tree formed is a minimum Steiner spanning tree, we have provided the Lemma 1. 

For proof, we used the assumption that ∃ is a minimum spanning tree SPT for u,v Є n such that: 
 

                             max( ( , )
TSPP u v ) < max( ( , )

TSTP u v ).                                                     (2) 

 
By rule of contradiction, it has been proved that STT is the minimum Steiner spanning tree. 
Let us consider the following notations for the proof given in Lemma 1. Let us denote the minimum 

Steiner spanning tree as STT, and ( , )
TSTP u v  be a unique path between u and v in the minimum Steiner 

spanning tree STT. Let us assume that the maximum length of an edge in ( , )
TSTP u v  is the max ( ( , )

TSTP u v ). 
 
Lemma 1.  The algorithm finds the minimum Steiner spanning tree STT. 
 
Proof:     Let us assume that ∃ is a minimum spanning tree SPT for u,v Є n, such that: 
 

max( ( , )
TSPP u v ) < max( ( , )

TSTP u v ). 

 
Therefore, ∃ is an edge (u’,v’) of ( , )

TSTP u v  that is longer than the edge of  ( , )
TSPP u v . Let us remove 

(u’,v’) from STT. Therefore, STT will be partitioned into two components that are connected. If we add 
an edge (u’’,v’’) to STT , it will make the graph connected by joining the connected components. This 
will create a Steiner spanning tree STT’ with: 
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length (STT’ ) =  length (STT) - length ((u’,v’)) + length ((u’’,v’’)) 
                                                      ≤  length(STT) - max( ( , )

TSPP u v ) + max( ' ( , )
TSTP u v ) 

<  length(STT)                                    (3) 
 
A contradiction to our definition of the minimum Steiner spanning tree. Therefore, our assumption 

is wrong and STT is the minimum. 
 

5.2 Analysis of the Computation-Parallel Version 
 

Our proposed approach calculates the total execution time using the computation time and 
communication time, as given below: 

 
Total execution time = computation time + communication time.                            (4) 

 
In the parallel version, parallelization is done for finding the intermediate non-terminal nodes. The 

time complexity for finding the intermediate non-terminal nodes is O(n), where n refers to all the 
nodes. The communication time is computed as: 

 
Communication time = n * (tstart+mi*tdata) + α                                                  (5) 

 
where, ‘tstart’ is the start time, ‘mi’ is the amount of data sent by ith thread to the master thread,  ‘tdata’ is 
the time taken for sending the data of each ‘mi’, ‘n’ is the total number of threads. And ‘α’ is the time for 
communication between the threads. 

 
 

6. Results and Discussion 

Apart from proving that the tree formed is a minimum Steiner spanning tree, we have analyzed the 
parallel and sequential versions and found that the computation time of the parallel version is less than 
the computation time of the sequential version. The results are illustrated in Table 1. We arrived at the 
results based on different values of n and T. 

 
Table 1. Computation time in parallel version vs. computation time in sequential version 

 Total no. of nodes 
(n) 

No. of terminal 
nodes (T) 

Computation time 
(s) 

Communication 
time (s)               

Parallel version 100 75 0.013 1.075 
 70 65 0.011 0.670 
 50 30 0.006 0.298 
 50 20 0.004 0.284 
 25 10 0.007 0.079 

Sequential version 100 75 1.107 - 
 70 65 0.692 - 
 50 30 0.347 - 
 50 20 0.292 - 
 25 10 0.093 - 
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Fig. 2 shows a graph, plotted with a number of terminal nodes along the x-axis and the computation 
time along the y-axis. The graph illustrates a comparison of the computation times for the parallel and 
sequential versions. 

 

 

Fig. 2. Graph for parallel-sequential comparison. 
 
 

7. Conclusion 

The proposed approach consumes a number of terminals as input and constructs a minimal Steiner 
tree. It builds paths from the source to destinations with regard to multicasting. Our approach achieves 
cost reduction by including the non-terminals only on demand. Since the weights are randomly 
assigned to edges based on exponential distribution, the proposed approach is effective for a large 
number of nodes, which results in multiple paths between the source and destinations. This allows 
our approach to offer reliable transmission. We conducted our experiments on few terminals and on 
large numbers also. The experimental results of the sequential and parallel versions were compared and 
reveal that parallel execution works faster than the sequential version in finding the paths with the 
minimum cost. Beyond the results we have proved, we found that randomly assigning weights using 
exponential distribution appears to be a good model for multicasting, but, not a good model with 
regard to the topology of the network. This seems to be an open problem for using different 
distributions on Steiner tree-based networks with different topologies. A lot of research on Steiner trees 
in relation to network communication can still be done. 
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