

www.kips.or.kr Copyright© 2017 KIPS

Parallel and Sequential Implementation to Minimize the
Time for Data Transmission Using Steiner Trees

V. Anand* and N. Sairam*

Abstract
In this paper, we present an approach to transmit data from the source to the destination through a minimal
path (least-cost path) in a computer network of n nodes. The motivation behind our approach is to address
the problem of finding a minimal path between the source and destination. From the work we have studied,
we found that a Steiner tree with bounded Steiner vertices offers a good solution. A novel algorithm to
construct a Steiner tree with vertices and bounded Steiner vertices is proposed in this paper. The algorithm
finds a path from each source to each destination at a minimum cost and minimum number of Steiner
vertices. We propose both the sequential and parallel versions. We also conducted a comparative study of
sequential and parallel versions based on time complexity, which proved that parallel implementation is more
efficient than sequential.

Keywords
Least-Cost Path, Non-terminal Nodes, Parallel, Sequential, Steiner Vertices, Terminals, Time Complexity

1. Introduction

The Steiner tree problem attracts considerable interest because of its applications in various areas. A
Steiner tree problem ascertains a Steiner minimum tree, that is, a Steiner tree of the least length. A
Steiner tree may be comprised of Steiner points. The length of a Steiner tree is measured by adding the
length of all the edges. The Steiner tree problem aims at constructing a network N, which interconnects
a set of t terminals with the following characteristics:

1. T may contain nodes other than the given terminals.
2. T minimizes a given cost function.
3. The given cost function guarantees that T can be assumed to be a minimum spanning tree on its

nodes (for a given metric).

The first characteristic gives rise to a problem in topology, which is that there is an exponential

increase in the number of different topologies to be taken. A control has to be enforced on the number
of extra nodes. That is, the first characteristic should be replaced as explained below.

T may contain up to k nodes, other than the given terminals, where k is a given positive integer. The

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received April 13, 2015; accepted July 16,2015.
Corresponding Author: V. Anand (anandwithah@gmail.com)
* School of Computing, SASTRA University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India ({anandwithah, indsai}@gmail.com)

J Inf Process Syst, Vol.13, No.1, pp.104~113, February 2017 ISSN 1976-913X (Print)
https://doi.org/10.3745/JIPS.03.0061 ISSN 2092-805X (Electronic)

V. Anand and N. Sairam

J Inf Process Syst, Vol.13, No.1, pp.104~113, February 2017 | 105

Steiner tree problem has applications in network routing and wireless communication networks.
We attempted to construct a minimal-Steiner tree. Our approach constructs a minimal-Steiner tree,

which includes non-terminal nodes in the shortest path, only if necessary. Our approach does not
assign equal weight for all edges. Each edge is randomly assigned a weight based on exponential
distribution. These features make our approach capable of overcoming the problem of irregular
topologies. We tested our approach both sequentially and in parallel.

This paper is laid out as follows: Section 2 presents the related work, Section 3 discusses the proposed
approach, Section 4 presents the algorithm for the sequential version and its analysis, Section 5 presents
the algorithm for the parallel version and its analysis, Section 6 presents the results, and the conclusion
is given in Section 7.

2. Related Work

Two approximation algorithms have been proposed for Steiner connected dominating sets [1]. One
algorithm is used for finding a small dominating set and choosing a terminal as the representative for
each vertex in that set, and the other algorithm is for selecting a core vertex and connecting the
terminals that have been left out.

The approach proposed in [2], presents an O(n2) time approximation algorithm for the minimum
rectilinear Steiner tree. They showed that the algorithm has a high approximation ratio.

The work proposed in [3] is a technique of linking a collection of terminals by a Steiner tree in a
randomized setup. The work proposed a 2-stage stochastic optimization with recourse model for the
Steiner tree problem. The model is for an undirected graph G=(V,E), in which V represents vertices and
E represents edges, Ce refers to the cost of the edge and a collection of terminals, where g = {t1, t2, . . . ,
tk}, and it finds a subset E’, which consists of the least cost edges that links all of the terminals.

The author in [4], proposed a new approach, where he offered algorithms for approximating the
directed Steiner tree problem, set cover problem, and generalized Steiner tree problem. He proposed the
new primal-dual algorithm, which maintains the double key in the inner of the double feasible region,
unlike traditional primal-twofold algorithms. This new approach avoids many arcs in the result, thereby
achieving a lesser-cost result. This approach is the inner-point version of the primal-twofold, which
performs better than the actual primal-dual method.

The approach proposed in [5] contributes polynomial time approximation schemes for the ϵ-dense
Steiner tree problems. Upon comparison with the total number of terminals, if the number of terminal

sets is small, their approach proved that the ratio 1+O((∑i log|S i |)/(∑i |Si |)), where, Si is the terminal
sets and it becomes less.

The study done in [6], proved that a graph G that is thought to be symmetric has a weight or cost
function, where, weight(i, j) = weight(j, i) for all edges (i, j), which belongs to E, where “weight” is the
edge weight function. In these cases, the solution of a directed least cost Steiner tree problem and a least
cost Steiner tree for an equal undirected weighted graph are alike.

An approximation algorithm based on linear programming uses a randomized rounding technique
[7], which is done iteratively. The algorithm is implemented as a directed-component cut reduction for
a Steiner tree limited to k. The value of the related variable in the optimum fractional solution is taken.
Then, the sampling is done for one of the components with the probability relative to that value and

Parallel and Sequential Implementation to Minimize the Time for Data Transmission Using Steiner Trees

106 | J Inf Process Syst, Vol.13, No.1, pp.104~113, February 2017

contract it. The process is repeated, which yields the sampled components with a least-cost terminal
spanning tree in the graph. Since the integrality gap is a maximum of 1.55, this algorithm answers the
question of: “Is there any LP-relaxation for a Steiner tree with an integrality gap less than 2?”.

A generalised method to solve the k-Steiner tree problem [8] deals with Steiner minimum trees,
which may contain up to k-Steiner points for a given constant k. This approach generalizes the
1-Steiner tree problem proposed in [9], which gives an optimal solution within O(n2) time. But, the
approach proposed in [8] offers the solution in O(n2k) time.

The authors of [10] have shown that the problem of reducing the length of the lengthy edge in a
Steiner tree with atmost k-Steiner vertices is NP-hard and cannot be approximated within a factor 2-ε,
for any ε > 0, unless P = NP. This proposed algorithm performs one of the following operations for the

given edge ei ∈ E: (a) It either constructs a k-ST in G with bottleneck at most 2d(ei), or (b) it returns the
information that Gi does not contain a k-ST.

A hybrid algorithm was proposed in [11]. The algorithm focused on solving the Steiner tree problem
and was built on the modified intelligent water drops algorithm and learning automata. The intelligent
water drops algorithm is efficient because of its global search and quick convergence abilities. To
improve its performance, learning automata was used to select the parameters of the intelligent water
drops algorithm. This hybrid algorithm performs better than conventional heuristic algorithms and
other algorithms with quick convergence. For time-constrained problems, the proposed Extended
Intelligent Water Drops (EIWD) algorithm offers the benefit of quick convergence.

The algorithm presented in [12] is for computing a min-cost tree S, which spans all terminals. The
aim was to minimize the total power consumption of nodes. The power of a node v was computed as
edges of the S incident to v are taken, calculate the cost of these edges and find the maximum of it. The
min-power version of the problem is suitable for wireless applications.

The approach proposed in [13] concentrates on arbitrary cases of the Steiner tree problem. Taking
the performance analysis of the algorithms on typical instances, the focus was to harmonize the typical
worst case study of algorithms with them. For a given random graph, the work done in [14] constructed
minimum Steiner trees with the weights of all of the edges being the same, which were equal to 1. In a
complete graph Kn, with n vertices, this approach sought to find the least weight of a Steiner tree. The
weights of the edges were selected independently from a distribution X.

3. Proposed Approach

This paper aims at constructing a minimal-Steiner tree. There are many algorithms available for
constructing a minimal-Steiner tree. However, our approach does it with the improvement of randomly
assigning weights and with a control over the number of extra nodes (non-terminals). Our approach
also constructs a weighted Steiner tree, with the edges having random weights.

As stated by the author of [15], a weighted Steiner tree can be defined as an undirected network
G=(n,e,δ,C), where δ is a mapping from the collection of vertices to the collection of reals called
“weights,” and let T be a non-empty set, T ⊆ n called terminals. The weighted Steiner tree problem is
defined as:

Find SG(T)→ a subnetwork of G such that ∀ pair of terminals ∃ a path

V. Anand and N. Sairam

J Inf Process Syst, Vol.13, No.1, pp.104~113, February 2017 | 107

,() () ()
min

i G i j G

i ij
n s T n n s T

w C

 (1)

where, W is the weight of edges and C is the cost of nodes. A Steiner tree is a collection of terminals and
non-terminals (Steiner points), which is shown in Fig. 1.

Fig. 1 shows a collection of terminals (vi) and non-terminals (uj), For terminals (vi), “i” varies from
1 to 7 and for non-terminals (uj) “j” varies from 1 to 3.

However, the issue is that the maximum number of non-terminals leads to different topologies. Our
approach focuses on the shortest path with the least cost. If the shortest path needs some non-terminals
in the paths to destinations, then only the non-terminals will be included in the paths towards
destinations. This solves the problem of different (irregular) topologies.

Fig. 1. A Steiner tree with 7 terminals and 3 non-terminals (Steiner points).

This approach obtains the number of terminals and non-terminals as input and the cost matrix is

formed. Each edge is randomly assigned a weight based on exponential distribution. Using the matrix,
our algorithm finds the shortest path between vertices. A minimal tree is constructed with all terminal
nodes. Finally, our internodes procedure finds the intermediate non-terminal nodes in the path
between the source and destinations and, thus, a minimal-Steiner tree is constructed.

Our approach is implemented in two ways—sequentially and in parallel. Sequential implementation
is done with C language and for parallel implementation, openMP in RedHat Linux Ubuntu release is
used.

4. Algorithms for a Sequential Version

4.1 Finding the Minimal Steiner Tree

In a minimal Steiner tree problem, the vertices are separated into terminal and non-terminals. The
solution or the output must have the terminals. The weights of all edges are added to calculate the
weight or cost of a Steiner tree. To find the least-cost Steiner tree, the tree might encompass some
Steiner points (non-terminals). Our approach produces the results at a minimum cost by including the
non-terminals only on demand. The following procedure generates a cost matrix with a set of nodes by

Parallel and Sequential Implementation to Minimize the Time for Data Transmission Using Steiner Trees

108 | J Inf Process Syst, Vol.13, No.1, pp.104~113, February 2017

calling routines to find the shortest path and finds the minimal tree to connect terminal nodes. The
algorithms are presented below.

To find a minimal-Steiner tree

Step 1: Give the input for the number of terminal and non-terminal nodes.
Step 2: The cost matrix is formed by randomly assigning weights based on exponential distribution.
Step 3: Call the shortest path to find the minimal path between vertices.
Step 4: Call the minimal tree to find the minimal tree that connects the terminal nodes.
Step 5: FOR i = 1 TO 2*T steps of 2

call the internodes to find the intermediate nodes
between sttree[i] and sttree[i+1]

 END FOR

4.2 Finding the Shortest Path

The algorithm presented here finds the shortest path from a chosen source to a given destination. It
partitions vertices into two distinct groups, a group of not-placed vertices and a group of placed
vertices. To begin with, all vertices are not-placed, and the algorithm ends once all vertices are in the
placed set. A vertex is moved from the not-placed set to the placed set, once its shortest distance from
the source has been found. This algorithm is so powerful that it finds all of the shortest paths from the
source to all of the destinations.

To find the shortest path

Step 1: FOR k= 1 TO n
Step 2: FOR i = 1 TO n
Step 3: FOR j = 1 TO n
Step 4: IF (arr[i][j] > arr[i][k] + arr[k][j])
 arr[i][j] = arr[i][k] + arr[k][j];
 path[i][j]=k;
 END IF
 END FOR
 END FOR
 END FOR

4.3 Finding the Minimal Spanning Tree

Given a graph G, the algorithm produces a minimum spanning tree of G. Our approach finds the
minimal spanning tree in this way: a tree is an acyclic graph. The algorithm starts with an empty graph
and adds edges one at a time, so that it is acyclic. The resulting graph is always a subset of some
minimum spanning tree.

To find the minimal spanning tree

V. Anand and N. Sairam

J Inf Process Syst, Vol.13, No.1, pp.104~113, February 2017 | 109

 Step 1: v[0]=TRUE;
 Step 2: FOR i = 2 TO n
 v[i]=FALSE;
 END FOR
 Step 3: sttree[1]=1, s=0,k=2;
 Step 4: WHILE (k<n)
 min=999;
 FOR i = 1 TO n
 FOR j = 2 TO n
 IF(v[i]==TRUE&&v[j]==FALSE&&c[i][j]<min)
 min=c[i][j];
 v1=I;
 v2=j;
 END IF
 END FOR
 END FOR
 mincost=mincost+min;
 v[v2]=TRUE;
 k++,sttree[s++]=v1,sttree[s++]=v2;
 END WHILE

4.4 Finding the Intermediate Nodes

In the algorithm to find the minimal-Steiner tree, internodes is called in Step 5. This procedure is
called to find the intermediate nodes between the source and destination, if there are any.

To find the intermediate nodes

internodes(path[][MAX],arr[][MAX],r1,c1)
Step 1: i=r1,j=c1, node[nno++]=r1
Step 2: Print (r1);
Step 3: WHILE(path[i][j]!=-1)
 PRINT (path[i][j])
 i=path[i][j];
 END WHILE
Step 4: PRINT(c1)

4.5 Analysis of the Computation-Sequential Version

The procedure to find the minimal spanning tree has a time complexity of O(T^2), where T is the
number of terminals. This is extremely fast compared to the exact rectilinear Steiner minimal tree
(RSMT) algorithm. The time complexity of the algorithm to get the least-cost path is O(E log n), where
E refers to edges and n refers to vertices. The number of edges is determined from the value of T, and
for each edge internodes is called. The time complexity of internodes is computed based on the count of

Parallel and Sequential Implementation to Minimize the Time for Data Transmission Using Steiner Trees

110 | J Inf Process Syst, Vol.13, No.1, pp.104~113, February 2017

Steiner points (non-terminal nodes) between the terminals, and the time complexity is O(T*n), where T
refers to the terminals and n refers to all the nodes.

5. Algorithm for the Parallel Version

The parallel version of our program was designed and executed using OpenMP. The procedure for
finding the intermediate nodes was parallelized. Each path from the source to the destination runs on a
separate thread and each thread consumes a different time for execution.

5.1 To Find the Minimal-Steiner Tree

Step 1: Give the input for the number of terminal nodes and non-terminal nodes.
Step 2: The cost matrix is formed by randomly assigning weights based on exponential distribution.
Step 3: Call the shortest path to find the minimal path between vertices.
Step 4: Call the minimal tree to find the minimal tree connecting terminal nodes.
Step 5: Parallel section begins
 Parallel FOR i = 1 TO 2*T steps of 2
 call the internode to find the intermediate
 nodes between sttree[i] and sttree[i+1]
 END the parallel FOR
 Parallel section ends

To prove that the tree formed is a minimum Steiner spanning tree, we have provided the Lemma 1.

For proof, we used the assumption that ∃ is a minimum spanning tree SPT for u,v Є n such that:

 max((,)
TSPP u v) < max((,)

TSTP u v). (2)

By rule of contradiction, it has been proved that STT is the minimum Steiner spanning tree.
Let us consider the following notations for the proof given in Lemma 1. Let us denote the minimum

Steiner spanning tree as STT, and (,)
TSTP u v be a unique path between u and v in the minimum Steiner

spanning tree STT. Let us assume that the maximum length of an edge in (,)
TSTP u v is the max ((,)

TSTP u v).

Lemma 1. The algorithm finds the minimum Steiner spanning tree STT.

Proof: Let us assume that ∃ is a minimum spanning tree SPT for u,v Є n, such that:

max((,)
TSPP u v) < max((,)

TSTP u v).

Therefore, ∃ is an edge (u’,v’) of (,)

TSTP u v that is longer than the edge of (,)
TSPP u v . Let us remove

(u’,v’) from STT. Therefore, STT will be partitioned into two components that are connected. If we add
an edge (u’’,v’’) to STT , it will make the graph connected by joining the connected components. This
will create a Steiner spanning tree STT’ with:

V. Anand and N. Sairam

J Inf Process Syst, Vol.13, No.1, pp.104~113, February 2017 | 111

length (STT’) = length (STT) - length ((u’,v’)) + length ((u’’,v’’))
 ≤ length(STT) - max((,)

TSPP u v) + max(' (,)
TSTP u v)

< length(STT) (3)

A contradiction to our definition of the minimum Steiner spanning tree. Therefore, our assumption

is wrong and STT is the minimum.

5.2 Analysis of the Computation-Parallel Version

Our proposed approach calculates the total execution time using the computation time and
communication time, as given below:

Total execution time = computation time + communication time. (4)

In the parallel version, parallelization is done for finding the intermediate non-terminal nodes. The

time complexity for finding the intermediate non-terminal nodes is O(n), where n refers to all the
nodes. The communication time is computed as:

Communication time = n * (tstart+mi*tdata) + α (5)

where, ‘tstart’ is the start time, ‘mi’ is the amount of data sent by ith thread to the master thread, ‘tdata’ is
the time taken for sending the data of each ‘mi’, ‘n’ is the total number of threads. And ‘α’ is the time for
communication between the threads.

6. Results and Discussion

Apart from proving that the tree formed is a minimum Steiner spanning tree, we have analyzed the
parallel and sequential versions and found that the computation time of the parallel version is less than
the computation time of the sequential version. The results are illustrated in Table 1. We arrived at the
results based on different values of n and T.

Table 1. Computation time in parallel version vs. computation time in sequential version

 Total no. of nodes
(n)

No. of terminal
nodes (T)

Computation time
(s)

Communication
time (s)

Parallel version 100 75 0.013 1.075
 70 65 0.011 0.670
 50 30 0.006 0.298
 50 20 0.004 0.284
 25 10 0.007 0.079

Sequential version 100 75 1.107 -
 70 65 0.692 -
 50 30 0.347 -
 50 20 0.292 -
 25 10 0.093 -

Parallel and Sequential Implementation to Minimize the Time for Data Transmission Using Steiner Trees

112 | J Inf Process Syst, Vol.13, No.1, pp.104~113, February 2017

Fig. 2 shows a graph, plotted with a number of terminal nodes along the x-axis and the computation
time along the y-axis. The graph illustrates a comparison of the computation times for the parallel and
sequential versions.

Fig. 2. Graph for parallel-sequential comparison.

7. Conclusion

The proposed approach consumes a number of terminals as input and constructs a minimal Steiner
tree. It builds paths from the source to destinations with regard to multicasting. Our approach achieves
cost reduction by including the non-terminals only on demand. Since the weights are randomly
assigned to edges based on exponential distribution, the proposed approach is effective for a large
number of nodes, which results in multiple paths between the source and destinations. This allows
our approach to offer reliable transmission. We conducted our experiments on few terminals and on
large numbers also. The experimental results of the sequential and parallel versions were compared and
reveal that parallel execution works faster than the sequential version in finding the paths with the
minimum cost. Beyond the results we have proved, we found that randomly assigning weights using
exponential distribution appears to be a good model for multicasting, but, not a good model with
regard to the topology of the network. This seems to be an open problem for using different
distributions on Steiner tree-based networks with different topologies. A lot of research on Steiner trees
in relation to network communication can still be done.

References

[1] Y. F. Wu, Y. L. Xu, and G. L. Chen, “Approximation algorithms for Steiner connected dominating set,” Journal of
Computer Science and Technology, vol. 20, no. 5, pp. 713-716, 2005.

V. Anand and N. Sairam

J Inf Process Syst, Vol.13, No.1, pp.104~113, February 2017 | 113

[2] J. MA, B. Yang, and S. Ma, “A practical algorithm for the minimum rectilinear Steiner tree,” Journal of Computer
Science and Technology, vol. 15, no. 1, pp. 96-99, 2000.

[3] A. Gupta and M. Pal, “Stochastic Steiner trees without a root,” in Automata, Languages, and Programming.
Heidelberg: Springer, 2005, pp. 1051-1063.

[4] V. Melkonian, “New primal-dual algorithms for Steiner tree problem,” Journal of Computers and Operations
Research, vol. 34, no. 7, pp. 2147-2167, 2007.

[5] M. Hauptmann, “On the approximability of dense Steiner problems,” Journal of Discrete Algorithms, vol. 21, pp.
41-51, 2013.

[6] D. Skorin-Kapov and J. Skorin-Kapov, “A note on Steiner tree games,” Journal of Networks, vol. 59, no. 2, pp.
215-225, 2012.

[7] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanita, “An improved LP-based approximation for Steiner tree,” in
Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), Cambridge, MA, 2010, pp. 583-592.

[8] M. Brazil, C. J. Ras, K. J. Swanepoel, and D. A. Thomas, “Generalised k-Steiner tree problems in normed
planes,” in Computing Research Repository, 2011 [Online]. Available: http://arxiv.org/pdf/1111.1464v1.pdf.

[9] G. Georgakopoulos and C. H. Papadimitriou, “The 1-Steiner tree problem,” Journal of Algorithms, vol. 8, no. 1,
pp. 122-130, 1987.

[10] A. K. Abu-Affash, P. Carmi, and M. J. Katz, “Bottleneck Steiner tree with bounded number of Steiner vertices,”
in Proceedings of 23rd Canadian Conference on Computational Geometry, Toronto, 2011, pp. 355-366.

[11] S. Noferesti and H. Shah-Hosseini, “A hybrid algorithm for solving Steiner tree problem,” International Journal
of Computer Applications, vol. 41, no. 5, pp. 14-20, 2012.

[12] F. Grandoni, “On min-power Steiner tree,” in Proceedings of 20th Annual European Symposium on Algorithms
(ESA), Ljubljana, Slovenia, 2012, pp. 527-538.

[13] B. Bollobas, D. Gamarnik, O. Riordan, and B. Sudakov, “On the value of a random minimum weight Steiner
tree,” Combinatorica, vol. 24, no. 2, pp. 187-207, 2004.

[14] L. Kucera, A. Marchetti-Spaccamela, M. Protasi, and M. Talamo, “Near optimal algorithms for finding
minimum Steiner trees on random graphs,” in Mathematical Foundations of Computer Science. Heidelberg:
Springer, 1986, pp. 501-511.

[15] A. Segev, “The node-weighted Steiner tree problem,” Networks, vol. 17, no.1, pp. 1-17, 1987.

V. Anand

He has received the MCA degree from A.V.C. College, Bharathidasan University and
M.Phil degree in Computer Science from Manonmaniam Sundaranar University,
Tirunelveli, Tamil Nadu, India. He is doing Ph.D. in SASTRA University. Currently,
he is an Assistant Professor at SASTRA University, Thanjavur. His research interests
include computer networks, parallel processing and database systems.

N. Sairam

He has received the M.Tech. degree in Computer Science and Engineering from
SASTRA University, Thanjavur. He has received the Ph.D. degree in Computer
Science from SASTRA University, Thanjavur. Currently, he is a Professor at SASTRA
University, Thanjavur. His research interests include distributed algorithms, parallel
processing, data mining and genetic algorithms.

