• Title/Summary/Keyword: minimum cost design

Search Result 411, Processing Time 0.024 seconds

Optimized LCL filter Design Method of Utility Interactive Inverter (계통연계형 인버터의 LCL필터 최적 설계기법)

  • Jung, Sang-Hyuk;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.103-109
    • /
    • 2013
  • The conventional LCL filter design method of the utility interactive inverter considers only harmonics attenuation of the current injected to the grid. However, in case of utility-interactive inverter with critical load the voltage quality of the critical load should also be considered for LCL filter design. Also, considering cost and volume of LCL filters. it is important to have minimum values of inductance and capacitance as far as the harmonic standards are satisfied. In this paper a LCL filter design method is proposed to satisfy not only the harmonic standards of the grid current during the grid-connected mode but the voltage quality of the critical load during grid-connected mode and stand-alone mode. With the proposed method optimized values of LCL filters could be obtained by applying weighting factor to voltage ripple across the critical load, inductor volume, amount of reactive current and system bandwidth.

An Economic Evaluation and Sensitivity Analysis of Remote MicroGrid According to Design Objectives (설계목표에 따른 독립형 마이크로그리드 경제성 평가 및 민감도 분석)

  • Weon, Jong-Nam;Chae, Woo-Kyu;Lee, Hak-Ju;Sim, Jun-Bo;Shin, Chang-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.892-897
    • /
    • 2017
  • Until now, it has been for choosing most economic result to be generally used for designing remote MicroGrid (MG) system. It is able to make economic benefit by reducing operation cost, but proportion of renewable energy will be minimum. In other words, it is difficult to get an effect by renewable energy because economic feasibility is an only consideration. Therefore, various factors should be considered and design objectives should be are diversified to design proper remote MG system. In this paper, remote MG system is classified into two types according to design objectives, and they are analysed through case study based on economic evaluation. In addition, economic feasibility for each type is analysed through sensitivity analysis according to various factors that affect the design results of the system.

A Genetic Algorithm for Guideway Network Design of Personal Rapid Transit (유전알고리즘을 이용한 소형궤도차량 선로네트워크 설계)

  • Won, Jin-Myung
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.3
    • /
    • pp.101-117
    • /
    • 2007
  • In this paper, we propose a customized genetic algorithm (GA) to find the minimum-cost guideway network (GN) of personal rapid transit (PRT) subject to connectivity, reliability, and traffic capacity constraints. PRT is a novel transportation concept, where a number of automated taxi-sized vehicles run on an elevated GN. One of the most important problems regarding PRT is how to design its GN topology for given station locations and the associated inter-station traffic demands. We model the GN as a directed graph, where its cost, connectivity, reliability, and node traffics are formulated. Based on this formulation, we develop the GA with special genetic operators well suited for the GN design problem. Such operators include steady state selection, repair algorithm, and directed mutation. We perform numerical experiments to determine the adequate GA parameters and compare its performance to other optimization algorithms previously reported. The experimental results verify the effectiveness and efficiency of the proposed approach for the GN design problem having up to 210 links.

  • PDF

A Study on the Design of Survivable Communication Networks (서바이버블한 통신망 설계에 관한 연구)

  • 정재연;이종영;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.11
    • /
    • pp.1726-1734
    • /
    • 1993
  • This paper propose a survivable communication network design process using node degree that augments the usual traffic flow and cost analyses with previously ignored topological survivability and computing time considerations. At first, decide a initial topology, and then measure a throughput of network. If the throughput is smaller than the required traffic, add edge to the optimum place by using minimum node degree and link distance. Otherwise, drop useless edge by using maximum node degree, link distance and link utilization. This process is repeated until throughput equals to the required traffics. This Process designs a survivable communication network with the minimized cost and computing time and usual traffic flow. The design proceses that minimized computing time are freely select initial topology and easily design a large network. And these results of algorithm are compared with the Kris and Pramod's in order to analyses the perfmance of the designed network.

  • PDF

Retrofit strategy issues for structures under earthquake loading using sensitivity-optimization procedures

  • Manolis, G.D.;Panagiotopoulos, C.G.;Paraskevopoulos, E.A.;Karaoulanis, F.E.;Vadaloukas, G.N.;Papachristidis, A.G.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.109-127
    • /
    • 2010
  • This work aims at introducing structural sensitivity analysis capabilities into existing commercial finite element software codes for the purpose of mapping retrofit strategies for a broad group of structures including heritage-type buildings. More specifically, the first stage sensitivity analysis is implemented for the standard deterministic environment, followed by stochastic structural sensitivity analysis defined for the probabilistic environment in a subsequent, second phase. It is believed that this new generation of software that will be released by the industrial partner will address the needs of a rapidly developing specialty within the engineering design profession, namely commercial retrofit and rehabilitation activities. In congested urban areas, these activities are carried out in reference to a certain percentage of the contemporary building stock that can no longer be demolished to give room for new construction because of economical, historical or cultural reasons. Furthermore, such analysis tools are becoming essential in reference to a new generation of national codes that spell out in detail how retrofit strategies ought to be implemented. More specifically, our work focuses on identifying the minimum-cost intervention on a given structure undergoing retrofit. Finally, an additional factor that arises in earthquake-prone regions across the world is the random nature of seismic activity that further complicates the task of determining the dynamic overstress that is being induced in the building stock and the additional demands placed on the supporting structural system.

Optimization of Parameters for LCL Filter of Least Square Method Based Three-phase PWM Converter

  • Zheng, Hong;Liang, Zheng-feng;Li, Meng-shu;Li, Kai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1626-1634
    • /
    • 2015
  • LCL filters are widely used in three-phase PWM converter for its advantages of small volume, low cost and inhibition of high frequency current harmonic. However, it is difficult to optimize its design because its parameters are mutually influenced while the value of each parameter for LCL filter has impacts on the converter's cost and size. In this paper, the target of optimization is to minimize the parameter values of LCL filter, and an optimization method for parameters of LCL filter of three-phase PWM converter based on least square method is proposed. With this method, a quantitative calculation of the harmonic component of the converter’s side phase voltage is performed first, and then the quantitative relationship between phase voltage harmonics and grid phase current harmonics is analyzed. After that, the attenuation requirement of each harmonic is obtained by taking into account the requirements for each harmonic component of grid current. Then according to the optimization objective, the objective function with minimum harmonic attenuation deviation is established, and least squares method is adopted for three-dimensional global searching of parameters for LCL filter. Thus, the designed harmonic attenuation curve approximates the minimum attenuation requirements, and the optimized LCL filter parameters are obtained. Finally, the effectiveness of the method is verified by the experiments.

The design of a scintillation system based on SiPMs integrated with gain correction functionality

  • Lin, Zhenhua;Hautefeuille, Benoit;Jung, Sung-Hee;Moon, Jinho;Park, Jang-Guen
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.164-169
    • /
    • 2020
  • Use of SiPM has been considered as an alternative to PMT, because of its compact size, low-operating voltage, non-sensitive to electromagnetic, low costs and so on. The main limitation for the use of SiPM is due to its small sensitive area compared to PMT that limits the light collection, and therefore the sensor energy resolution. In this article we studied the effect of increasing the number of SiPM by connecting them in parallel to increase the active detection area. This allowed us to compare the different energy resolution measurements. 137Cs has been selected as reference to study the energy resolution for 662 keV gamma-rays. Another investigation was to compare the minimum detectable gamma energy under various SiPM configurations. It has been found that the use of 4 SiPM arrays can greatly improve the energy resolution up to 4% than only one SiPM array, meanwhile use of more than 2 SiPM arrays does not increase the energy resolution significantly. Thus we can conclude that for a large area of cylindrical scintillator (3 × 3 inches), the use of SiPMs are limited to a certain number or certai active area depending on the commercial SiPMs, and its cost should be less than traditional PMT for the cost-effective and compact size considerations. It is well known that the gain of SiPM varies with temperature. In this article, we also calibrated gain to guarantee the same position of photoelectric peak in response of different temperatures.

Mean Estimation in Two-phase Sampling (이중추출에서 모평균 추정)

  • 김규성;김진석;이선순
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.13-24
    • /
    • 2001
  • In this paper, we investigated mean estimation methods in two-phase sampling. Under the fixed expected cost we reviewed the optimal sample sizes, minimum variances and approximate unbiased variance estimators for usual ratio estimator, stratified sample mean with proportional allocation and Rao's allocation of the second phase sample. Also we proposed combined ratio estimator, which uses both ratio estimation and stratification and derived optimal sample size, minimum variance and unbiased variance estimator. Through a limited simulation study, we compared estimators by design effects and came to know that ratio estimator is more efficient than stratified sample mean in some cases and inefficient in the other cases, but combined ratio estimator is more efficient than others in most cases.

  • PDF

Hierarchical Cellular Network Design with Channel Allocation Using Genetic Algorithm (유전자 알고리즘을 이용한 다중계층 채널할당 셀룰러 네트워크 설계)

  • Lee, Sang-Heon;Park, Hyun-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.321-333
    • /
    • 2005
  • With the limited frequency spectrum and an increasing demand for cellular communication services, the problem of channel assignment becomes increasingly important. However, finding a conflict free channel assignment with the minimum channel span is NP hard. As demand for services has expanded in the cellular segment, sever innovations have been made in order to increase the utilization of bandwidth. The innovations are cellular concept, dynamic channel assignment and hierarchical network design. Hierarchical network design holds the public eye because of increasing demand and quality of service to mobile users. We consider the frequency assignment problem and the base station placement simultaneously. Our model takes the candidate locations emanating from this process and the cost of assigning a frequency, operating and maintaining equipment as an input. In addition, we know the avenue and demand as an assumption. We propose the network about the profit maximization. This study can apply to GSM(Global System for Mobile Communication) which has 70% portion in the world. Hierarchical network design using GA(Genetic Algorithm) is the first three-tier (Macro, Micro, Pico) model, We increase the reality through applying to EMC (Electromagnetic Compatibility Constraints). Computational experiments on 72 problem instances which have 15${\sim}$40 candidate locations demonstrate the computational viability of our procedure. The result of experiments increases the reality and covers more than 90% of the demand.

  • PDF

Optimal seismic retrofit design method for asymmetric soft first-story structures

  • Dereje, Assefa Jonathan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.677-689
    • /
    • 2022
  • Generally, the goal of seismic retrofit design of an existing structure using energy dissipation devices is to determine the optimum design parameters of a retrofit device to satisfy a specified limit state with minimum cost. However, the presence of multiple parameters to be optimized and the computational complexity of performing non-linear analysis make it difficult to find the optimal design parameters in the realistic 3D structure. In this study, genetic algorithm-based optimal seismic retrofit methods for determining the required number, yield strength, and location of steel slit dampers are proposed to retrofit an asymmetric soft first-story structure. These methods use a multi-objective and single-objective evolutionary algorithms, each of which varies in computational complexity and incorporates nonlinear time-history analysis to determine seismic performance. Pareto-optimal solutions of the multi-objective optimization are found using a non-dominated sorting genetic algorithm (NSGA-II). It is demonstrated that the developed multi-objective optimization methods can determine the optimum number, yield strength, and location of dampers that satisfy the given limit state of a three-dimensional asymmetric soft first-story structure. It is also shown that the single-objective distribution method based on minimizing plan-wise stiffness eccentricity turns out to produce similar number of dampers in optimum locations without time consuming nonlinear dynamic analysis.